
Scalable SQL and NoSQL Data Stores
Rick Cattell

Originally published in 2010, last
revised December 2011

ABSTRACT
 In this paper, we examine a number of SQL and so-
called “NoSQL” data stores designed to scale simple
OLTP-style application loads over many servers.
Originally motivated by Web 2.0 applications, these
systems are designed to scale to thousands or millions
of users doing updates as well as reads, in contrast to
traditional DBMSs and data warehouses. We contrast
the new systems on their data model, consistency
mechanisms, storage mechanisms, durability
guarantees, availability, query support, and other
dimensions. These systems typically sacrifice some of
these dimensions, e.g. database-wide transaction
consistency, in order to achieve others, e.g. higher
availability and scalability.
Note: Bibliographic references for systems are not
listed, but URLs for more information can be found in
the System References table at the end of this paper.

Caveat: Statements in this paper are based on sources
and documentation that may not be reliable, and the
systems described are “moving targets,” so some
statements may be incorrect. Verify through other
sources before depending on information here.
Nevertheless, we hope this comprehensive survey is
useful! Check for future corrections on the author’s
web site cattell.net/datastores.
Disclosure: The author is on the technical advisory
board of Schooner Technologies and has a consulting
business advising on scalable databases.

1. OVERVIEW
In recent years a number of new systems have been
designed to provide good horizontal scalability for
simple read/write database operations distributed over
many servers. In contrast, traditional database
products have comparatively little or no ability to scale
horizontally on these applications. This paper
examines and compares the various new systems.
Many of the new systems are referred to as “NoSQL”
data stores. The definition of NoSQL, which stands
for “Not Only SQL” or “Not Relational”, is not
entirely agreed upon. For the purposes of this paper,
NoSQL systems generally have six key features:

1. the ability to horizontally scale “simple
operation” throughput over many servers,

2. the ability to replicate and to distribute (partition)
data over many servers,

3. a simple call level interface or protocol (in
contrast to a SQL binding),

4. a weaker concurrency model than the ACID
transactions of most relational (SQL) database
systems,

5. efficient use of distributed indexes and RAM for
data storage, and

6. the ability to dynamically add new attributes to
data records.

The systems differ in other ways, and in this paper we
contrast those differences. They range in functionality
from the simplest distributed hashing, as supported by
the popular memcached open source cache, to highly
scalable partitioned tables, as supported by Google’s
BigTable [1]. In fact, BigTable, memcached, and
Amazon’s Dynamo [2] provided a “proof of concept”
that inspired many of the data stores we describe here:
• Memcached demonstrated that in-memory indexes

can be highly scalable, distributing and replicating
objects over multiple nodes.

• Dynamo pioneered the idea of eventual
consistency as a way to achieve higher availability
and scalability: data fetched are not guaranteed to
be up-to-date, but updates are guaranteed to be
propagated to all nodes eventually.

• BigTable demonstrated that persistent record
storage could be scaled to thousands of nodes, a
feat that most of the other systems aspire to.

A key feature of NoSQL systems is “shared nothing”
horizontal scaling – replicating and partitioning data
over many servers. This allows them to support a large
number of simple read/write operations per second.
This simple operation load is traditionally called OLTP
(online transaction processing), but it is also common
in modern web applications
The NoSQL systems described here generally do not
provide ACID transactional properties: updates are
eventually propagated, but there are limited guarantees
on the consistency of reads. Some authors suggest a
“BASE” acronym in contrast to the “ACID” acronym:
• BASE = Basically Available, Soft state,

Eventually consistent
• ACID = Atomicity, Consistency, Isolation, and

Durability
The idea is that by giving up ACID constraints, one
can achieve much higher performance and scalability.

However, the systems differ in how much they give up.
For example, most of the systems call themselves
“eventually consistent”, meaning that updates are
eventually propagated to all nodes, but many of them
provide mechanisms for some degree of consistency,
such as multi-version concurrency control (MVCC).
Proponents of NoSQL often cite Eric Brewer’s CAP
theorem [4], which states that a system can have only
two out of three of the following properties:
consistency, availability, and partition-tolerance. The
NoSQL systems generally give up consistency.
However, the trade-offs are complex, as we will see.
New relational DBMSs have also been introduced to
provide better horizontal scaling for OLTP, when
compared to traditional RDBMSs. After examining
the NoSQL systems, we will look at these SQL
systems and compare the strengths of the approaches.
The SQL systems strive to provide horizontal
scalability without abandoning SQL and ACID
transactions. We will discuss the trade-offs here.
In this paper, we will refer to both the new SQL and
NoSQL systems as data stores, since the term
“database system” is widely used to refer to traditional
DBMSs. However, we will still use the term
“database” to refer to the stored data in these systems.
All of the data stores have some administrative unit
that you would call a database: data may be stored in
one file, or in a directory, or via some other
mechanism that defines the scope of data used by a
group of applications. Each database is an island unto
itself, even if the database is partitioned and distributed
over multiple machines: there is no “federated
database” concept in these systems (as with some
relational and object-oriented databases), allowing
multiple separately-administered databases to appear
as one. Most of the systems allow horizontal
partitioning of data, storing records on different servers
according to some key; this is called “sharding”. Some
of the systems also allow vertical partitioning, where
parts of a single record are stored on different servers.

1.1 Scope of this Paper
Before proceeding, some clarification is needed in
defining “horizontal scalability” and “simple
operations”. These define the focus of this paper.
By “simple operations”, we refer to key lookups, reads
and writes of one record or a small number of records.
This is in contrast to complex queries or joins, read-
mostly access, or other application loads. With the
advent of the web, especially Web 2.0 sites where
millions of users may both read and write data,
scalability for simple database operations has become
more important. For example, applications may search
and update multi-server databases of electronic mail,
personal profiles, web postings, wikis, customer

records, online dating records, classified ads, and many
other kinds of data. These all generally fit the
definition of “simple operation” applications: reading
or writing a small number of related records in each
operation.
The term “horizontal scalability” means the ability to
distribute both the data and the load of these simple
operations over many servers, with no RAM or disk
shared among the servers. Horizontal scaling differs
from “vertical” scaling, where a database system
utilizes many cores and/or CPUs that share RAM and
disks. Some of the systems we describe provide both
vertical and horizontal scalability, and the effective use
of multiple cores is important, but our main focus is on
horizontal scalability, because the number of cores that
can share memory is limited, and horizontal scaling
generally proves less expensive, using commodity
servers. Note that horizontal and vertical partitioning
are not related to horizontal and vertical scaling,
except that they are both useful for horizontal scaling.

1.2 Systems Beyond our Scope
Some authors have used a broad definition of NoSQL,
including any database system that is not relational.
Specifically, they include:
• Graph database systems: Neo4j and OrientDB

provide efficient distributed storage and queries of
a graph of nodes with references among them.

• Object-oriented database systems: Object-oriented
DBMSs (e.g., Versant) also provide efficient
distributed storage of a graph of objects, and
materialize these objects as programming
language objects.

• Distributed object-oriented stores: Very similar to
object-oriented DBMSs, systems such as GemFire
distribute object graphs in-memory on multiple
servers.

These systems are a good choice for applications that
must do fast and extensive reference-following,
especially where data fits in memory. Programming
language integration is also valuable. Unlike the
NoSQL systems, these systems generally provide
ACID transactions. Many of them provide horizontal
scaling for reference-following and distributed query
decomposition, as well. Due to space limitations,
however, we have omitted these systems from our
comparisons. The applications and the necessary
optimizations for scaling for these systems differ from
the systems we cover here, where key lookups and
simple operations predominate over reference-
following and complex object behavior. It is possible
these systems can scale on simple operations as well,
but that is a topic for a future paper, and proof through
benchmarks.

Data warehousing database systems provide horizontal
scaling, but are also beyond the scope of this paper.
Data warehousing applications are different in
important ways:
• They perform complex queries that collect and

join information from many different tables.
• The ratio of reads to writes is high: that is, the

database is read-only or read-mostly.
There are existing systems for data warehousing that
scale well horizontally. Because the data is
infrequently updated, it is possible to organize or
replicate the database in ways that make scaling
possible.

1.3 Data Model Terminology
Unlike relational (SQL) DBMSs, the terminology used
by NoSQL data stores is often inconsistent. For the
purposes of this paper, we need a consistent way to
compare the data models and functionality.
All of the systems described here provide a way to
store scalar values, like numbers and strings, as well as
BLOBs. Some of them also provide a way to store
more complex nested or reference values. The systems
all store sets of attribute-value pairs, but use different
data structures, specifically:
• A “tuple” is a row in a relational table, where

attribute names are pre-defined in a schema, and
the values must be scalar. The values are
referenced by attribute name, as opposed to an
array or list, where they are referenced by ordinal
position.

• A “document” allows values to be nested
documents or lists as well as scalar values, and the
attribute names are dynamically defined for each
document at runtime. A document differs from a
tuple in that the attributes are not defined in a
global schema, and this wider range of values are
permitted.

• An “extensible record” is a hybrid between a tuple
and a document, where families of attributes are
defined in a schema, but new attributes can be
added (within an attribute family) on a per-record
basis. Attributes may be list-valued.

• An “object” is analogous to an object in
programming languages, but without the
procedural methods. Values may be references or
nested objects.

1.4 Data Store Categories
In this paper, the data stores are grouped according to
their data model:
• Key-value Stores: These systems store values and

an index to find them, based on a programmer-
defined key.

• Document Stores: These systems store documents,
as just defined. The documents are indexed and a
simple query mechanism is provided.

• Extensible Record Stores: These systems store
extensible records that can be partitioned
vertically and horizontally across nodes. Some
papers call these “wide column stores”.

• Relational Databases: These systems store (and
index and query) tuples. The new RDBMSs that
provide horizontal scaling are covered in this
paper.

Data stores in these four categories are covered in the
next four sections, respectively. We will then
summarize and compare the systems.

2. KEY-VALUE STORES
The simplest data stores use a data model similar to the
popular memcached distributed in-memory cache, with
a single key-value index for all the data. We’ll call
these systems key-value stores. Unlike memcached,
these systems generally provide a persistence
mechanism and additional functionality as well:
replication, versioning, locking, transactions, sorting,
and/or other features. The client interface provides
inserts, deletes, and index lookups. Like memcached,
none of these systems offer secondary indices or keys.

2.1 Project Voldemort
Project Voldemort is an advanced key-value store,
written in Java. It is open source, with substantial
contributions from LinkedIn. Voldemort provides
multi-version concurrency control (MVCC) for
updates. It updates replicas asynchronously, so it does
not guarantee consistent data. However, it can
guarantee an up-to-date view if you read a majority of
replicas.
Voldemort supports optimistic locking for consistent
multi-record updates: if updates conflict with any other
process, they can be backed out. Vector clocks, as
used in Dynamo [3], provide an ordering on versions.
You can also specify which version you want to
update, for the put and delete operations.
Voldemort supports automatic sharding of data.
Consistent hashing is used to distribute data around a
ring of nodes: data hashed to node K is replicated on
node K+1 … K+n where n is the desired number of
extra copies (often n=1). Using good sharding
technique, there should be many more “virtual” nodes
than physical nodes (servers). Once data partitioning
is set up, its operation is transparent. Nodes can be
added or removed from a database cluster, and the
system adapts automatically. Voldemort automatically
detects and recovers failed nodes.

Voldemort can store data in RAM, but it also permits
plugging in a storage engine. In particular, it supports
a Berkeley DB and Random Access File storage
engine. Voldemort supports lists and records in
addition to simple scalar values.

2.2 Riak
Riak is written in Erlang. It was open-sourced by
Basho in mid-2009. Basho alternately describes Riak
as a “key-value store” and “document store”. We will
categorize it as an advanced key-value store here,
because it lacks important features of document stores,
but it (and Voldemort) have more functionality than
the other key-value stores:
• Riak objects can be fetched and stored in JSON

format, and thus can have multiple fields (like
documents), and objects can be grouped into
buckets, like the collections supported by
document stores, with allowed/required fields
defined on a per-bucket basis.

• Riak does not support indices on any fields except
the primary key. The only thing you can do with
the non-primary fields is fetch and store them as
part of a JSON object. Riak lacks the query
mechanisms of the document stores; the only
lookup you can do is on primary key.

Riak supports replication of objects and sharding by
hashing on the primary key. It allows replica values to
be temporarily inconsistent. Consistency is tunable by
specifying how many replicas (on different nodes)
must respond for a successful read and how many must
respond for a successful write. This is per-read and
per-write, so different parts of an application can
choose different trade-offs.
Like Voldemort, Riak uses a derivative of MVCC
where vector clocks are assigned when values are
updated. Vector clocks can be used to determine when
objects are direct descendents of each other or a
common parent, so Riak can often self-repair data that
it discovers to be out of sync.
The Riak architecture is symmetric and simple. Like
Voldemort, it uses consistent hashing. There is no
distinguished node to track status of the system: the
nodes use a gossip protocol to track who is alive and
who has which data, and any node may service a client
request. Riak also includes a map/reduce mechanism
to split work over all the nodes in a cluster.
The client interface to Riak is based on RESTful HTTP
requests. REST (REpresentational State Transfer) uses
uniform, stateless, cacheable, client-server calls. There
is also a programmatic interface for Erlang, Java, and
other languages.
The storage part of Riak is “pluggable”: the key-value
pairs may be in memory, in ETS tables, in DETS

tables, or in Osmos tables. ETS, DETS, and Osmos
tables are all implemented in Erlang, with different
performance and properties.
One unique feature of Riak is that it can store “links”
between objects (documents), for example to link
objects for authors to the objects for the books they
wrote. Links reduce the need for secondary indices,
but there is still no way to do range queries.
Here’s an example of a Riak object described in JSON:
 {
 "bucket":"customers",
 "key":"12345",
 "object":{
 "name":"Mr. Smith",
 "phone":”415-555-6524” }
 "links":[
 ["sales","Mr. Salesguy","salesrep"],
 ["cust-orders","12345","orders"]]
 "vclock":"opaque-riak-vclock",
 "lastmod":"Mon, 03 Aug 2009 18:49:42 GMT"
 }
Note that the primary key is distinguished, while other
fields are part of an “object” portion. Also note that
the bucket, vector clock, and modification date is
specified as part of the object, and links to other
objects are supported.

2.3 Redis
The Redis key-value data store started as a one-person
project but now has multiple contributors as BSD-
licensed open source. It is written in C.
A Redis server is accessed by a wire protocol
implemented in various client libraries (which must be
updated when the protocol changes). The client side
does the distributed hashing over servers. The servers
store data in RAM, but data can be copied to disk for
backup or system shutdown. System shutdown may be
needed to add more nodes.
Like the other key-value stores, Redis implements
insert, delete and lookup operations. Like Voldemort,
it allows lists and sets to be associated with a key, not
just a blob or string. It also includes list and set
operations.
Redis does atomic updates by locking, and does
asynchronous replication. It is reported to support
about 100K gets/sets per second on an 8-core server.

2.4 Scalaris
Scalaris is functionally similar to Redis. It was written
in Erlang at the Zuse Institute in Berlin, and is open
source. In distributing data over nodes, it allows key
ranges to be assigned to nodes, rather than simply
hashing to nodes. This means that a query on a range
of values does not need to go to every node, and it also
may allow better load balancing, depending on key
distribution.

Like the other key-value stores, it supports insert,
delete, and lookup. It does replication synchronously
(copies must be updated before the operation is
complete) so data is guaranteed to be consistent.
Scalaris also supports transactions with ACID
properties on multiple objects. Data is stored in
memory, but replication and recovery from node
failures provides durability of the updates.
Nevertheless, a multi-node power failure would cause
disastrous loss of data, and the virtual memory limit
sets a maximum database size.
Scalaris reads and writes must go to a majority of the
replicas before an operation completes. Scalaris uses a
ring of nodes, an unusual distribution and replication
strategy that requires log(N) hops to read/write a key-
value pair.

2.5 Tokyo Cabinet
Tokyo Cabinet / Tokyo Tyrant was a sourcefourge.net
project, but is now licensed and maintained by FAL
Labs. Tokyo Cabinet is the back-end server, Tokyo
Tyrant is a client library for remote access. Both are
written in C.
There are six different variations for the Tokyo
Cabinet server: hash indexes in memory or on disk, B-
trees in memory or on disk, fixed-size record tables,
and variable-length record tables. The engines
obviously differ in their performance characteristics,
e.g. the fixed-length records allow quick lookups.
There are slight variations on the API supported by
these engines, but they all support common
get/set/update operations. The documentation is a bit
unclear, but they claim to support locking, ACID
transactions, a binary array data type, and more
complex update operations to atomically update a
number or concatenate to a string. They support
asynchronous replication with dual master or
master/slave. Recovery of a failed node is manual, and
there is no automatic sharding.

2.6 Memcached, Membrain, and
Membase
The memcached open-source distributed in-memory
indexing system has been enhanced by Schooner
Tehnologies and Membase, to include features
analogous to the other key-value stores: persistence,
replication, high availability, dynamic growth, backup,
and so on. Without persistence or replication,
memcached does not really qualify as a “data store”.
However, Membrain and Membase certainly do, and
these systems are also compatible with existing
memcached applications. This compatibility is an
attractive feature, given that memcached is widely
used; memcached users that require more advanced
features can easily upgrade to Membase and
Membrain.

The Membase system is open source, and is supported
by the company Membase. Its most attractive feature
is probably its ability to elastically add or remove
servers in a running system, moving data and
dynamically redirecting requests in the meantime. The
elasticity in most of the other systems is not as
convenient.
Membrain is licensed per server, and is supported by
Schooner Technologies. Its most attractive feature is
probably its excellent tuning for flash memory. The
performance gains of flash memory will not be gained
in other systems by treating flash as a faster hard disk;
it is important that the system treat flash as a true
“third tier”, different from RAM and disk. For
example, many systems have substantial overhead in
buffering and caching hard disk pages; this is
unnecessary overhead with flash. The benchmark
results on Schooner’s web site show many times better
performance than a number of competitors, particularly
when data overflows RAM.

2.7 Summary
All the key-value stores support insert, delete, and
lookup operations. All of these systems provide
scalability through key distribution over nodes.
Voldemort, Riak, Tokyo Cabinet, and enhanced
memcached systems can store data in RAM or on disk,
with storage add-ons. The others store data in RAM,
and provide disk as backup, or rely on replication and
recovery so that a backup is not needed.
Scalaris and enhanced memcached systems use
synchronous replication, the rest use asynchronous.
Scalaris and Tokyo Cabinet implement transactions,
while the others do not.
Voldemort and Riak use multi-version concurrency
control (MVCC), the others use locks.
Membrain and Membase are built on the popular
memcached system, adding persistence, replication,
and other features. Backward compatibility with
memcached give these products an advantage.

3. DOCUMENT STORES
As discussed in the first section, document stores
support more complex data than the key-value stores.
The term “document store” may be confusing: while
these systems could store “documents” in the
traditional sense (articles, Microsoft Word files, etc.), a
document in these systems can be any kind of
“pointerless object”, consistent with our definition in
Section 1. Unlike the key-value stores, these systems
generally support secondary indexes and multiple
types of documents (objects) per database, and nested
documents or lists. Like other NoSQL systems, the

document stores do not provide ACID transactional
properties.

3.1 SimpleDB
SimpleDB is part of Amazon’s proprietary cloud
computing offering, along with their Elastic Compute
Cloud (EC2) and their Simple Storage Service (S3) on
which SimpleDB is based. SimpleDB has been around
since 2007. As the name suggests, its model is simple:
SimpleDB has Select, Delete, GetAttributes, and
PutAttributes operations on documents. SimpleDB is
simpler than other document stores, as it does not
allow nested documents.
Like most of the systems we discuss, SimpleDB
supports eventual consistency, not transactional
consistency. Like most of the other systems, it does
asynchronous replication.
Unlike key-value datastores, and like the other
document stores, SimpleDB supports more than one
grouping in one database: documents are put into
domains, which support multiple indexes. You can
enumerate domains and their metadata. Select
operations are on one domain, and specify a
conjunction of constraints on attributes, basically in the
form:

select <attributes> from <domain> where
 <list of attribute value constraints>

Different domains may be stored on different Amazon
nodes.
Domain indexes are automatically updated when any
document’s attributes are modified. It is unclear from
the documentation whether SimpleDB automatically
selects which attributes to index, or if it indexes
everything. In either case, the user has no choice, and
the use of the indexes is automatic in SimpleDB query
processing.
SimpleDB does not automatically partition data over
servers. Some horizontal scaling can be achieve by
reading any of the replicas, if you don’t care about
having the latest version. Writes do not scale,
however, because they must go asynchronously to all
copies of a domain. If customers want better scaling,
they must do so manually by sharding themselves.
SimpleDB is a “pay as you go” proprietary solution
from Amazon. There are currently built-in constraints,
some of which are quite limiting: a 10 GB maximum
domain size, a limit of 100 active domains, a 5 second
limit on queries, and so on. Amazon doesn’t license
SimpleDB source or binary code to run on your own
servers. SimpleDB does have the advantage of
Amazon support and documentation.

3.2 CouchDB
CouchDB has been an Apache project since early
2008. It is written in Erlang.

A CouchDB “collection” of documents is similar to a
SimpleDB domain, but the CouchDB data model is
richer. Collections comprise the only schema in
CouchDB, and secondary indexes must be explicitly
created on fields in collections. A document has field
values that can be scalar (text, numeric, or boolean) or
compound (a document or list).
Queries are done with what CouchDB calls “views”,
which are defined with Javascript to specify field
constraints. The indexes are B-trees, so the results of
queries can be ordered or value ranges. Queries can be
distributed in parallel over multiple nodes using a map-
reduce mechanism. However, CouchDB’s view
mechanism puts more burden on programmers than a
declarative query language.
Like SimpleDB, CouchDB achieves scalability
through asynchronous replication, not through
sharding. Reads can go to any server, if you don’t care
about having the latest values, and updates must be
propagated to all the servers. However, a new project
called CouchDB Lounge has been built to provide
sharding on top of CouchDB, see:

http://code.google.com/p/couchdb-lounge/
Like SimpleDB, CouchDB does not guarantee
consistency. Unlike SimpleDB, each client does see a
self-consistent view of the database, with repeatable
reads: CouchDB implements multi-version
concurrency control on individual documents, with a
Sequence ID that is automatically created for each
version of a document. CouchDB will notify an
application if someone else has updated the document
since it was fetched. The application can then try to
combine the updates, or can just retry its update and
overwrite.
CouchDB also provides durability on system crash.
All updates (documents and indexes) are flushed to
disk on commit, by writing to the end of a file. (This
means that periodic compaction is needed.) By
default, it flushes to disk after every document update.
Together with the MVCC mechanism, CouchDB’s
durability thus provides ACID semantics at the
document level.
Clients call CouchDB through a RESTful interface.
There are libraries for various languages (Java, C,
PHP, Python, LISP, etc) that convert native API calls
into the RESTful calls for you. CouchDB has some
basic database adminstration functionality as well.

3.3 MongoDB
MongoDB is a GPL open source document store
written in C++ and supported by 10gen. It has some
similarities to CouchDB: it provides indexes on
collections, it is lockless, and it provides a document
query mechanism. However, there are important
differences:

• MongoDB supports automatic sharding,
distributing documents over servers.

• Replication in MongoDB is mostly used for
failover, not for (dirty read) scalability as in
CouchDB. MongoDB does not provide the global
consistency of a traditional DBMS, but you can
get local consistency on the up-to-date primary
copy of a document.

• MongoDB supports dynamic queries with
automatic use of indices, like RDBMSs. In
CouchDB, data is indexed and searched by writing
map-reduce views.

• CouchDB provides MVCC on documents, while
MongoDB provides atomic operations on fields.

Atomic operations on fields are provided as follows:
• The update command supports “modifiers” that

facilitate atomic changes to individual values: $set
sets a value, $inc increments a value, $push
appends a value to an array, $pushAll appends
several values to an array, $pull removes a value
from an array, and $pullAll removes several
values from an array. Since these updates
normally occur “in place”, they avoid the
overhead of a return trip to the server.

• There is an “update if current” convention for
changing a document only if field values match a
given previous value.

• MongoDB supports a findAndModify command
to perform an atomic update and immediately
return the updated document. This is useful for
implementing queues and other data structures
requiring atomicity.

MongoDB indices are explicitly defined using an
ensureIndex call, and any existing indices are
automatically used for query processing. To find all
products released last year costing under $100 you
could write:

db.products.find(
 {released: {$gte: new Date(2009, 1, 1,)},
 price {‘$lte’: 100},})

If indexes are defined on the queried fields, MongoDB
will automatically use them. MongoDB also supports
map-reduce, which allows for complex aggregations
across documents.
MongoDB stores data in a binary JSON-like format
called BSON. BSON supports boolean, integer, float,
date, string and binary types. Client drivers encode the
local language’s document data structure (usually a
dictionary or associative array) into BSON and send it
over a socket connection to the MongoDB server (in
contrast to CouchDB, which sends JSON as text over
an HTTP REST interface). MongoDB also supports a
GridFS specification for large binary objects, eg.

images and videos. These are stored in chunks that can
be streamed back to the client for efficient delivery.
MongoDB supports master-slave replication with
automatic failover and recovery. Replication (and
recovery) is done at the level of shards. Collections
are automatically sharded via a user-defined shard key.
Replication is asynchronous for higher performance, so
some updates may be lost on a crash.

3.4 Terrastore
Another recent document store is Terrastore, which is
built on the Terracotta distributed Java VM clustering
product. Like many of the other NoSQL systems,
client access to Terrastore is built on HTTP operations
to fetch and store data. Java and Python client APIs
have also been implemented.
Terrastore automatically partitions data over server
nodes, and can automatically redistribute data when
servers are added or removed. Like MongoDB, it can
perform queries based on a predicate, including range
queries, and like CouchDB, it includes a map/reduce
mechanism for more advanced selection and
aggregation of data.
Like the other document databases, Terrastore is
schema-less, and does not provide ACID transactions.
Like MongoDB, it provides consistency on a per-
document basis: a read will always fetch the latest
version of a document.
Terrastore supports replication and failover to a hot
standby.

3.5 Summary
The document stores are schema-less, except for
attributes (which are simply a name, and are not pre-
specified), collections (which are simply a grouping of
documents), and the indexes defined on collections
(explicitly defined, except with SimpleDB). There are
some differences in their data models, e.g. SimpleDB
does not allow nested documents.
The document stores are very similar but use different
terminology. For example, a SimpleDB Domain =
CouchDB Database = MongoDB Collection =
Terrastore Bucket. SimpleDB calls documents
“items”, and an attribute is a field in CouchDB, or a
key in MongoDB or Terrastore.
Unlike the key-value stores, the document stores
provide a mechanism to query collections based on
multiple attribute value constraints. However,
CouchDB does not support a non-procedural query
language: it puts more work on the programmer and
requires explicit utilization of indices.
The document stores generally do not provide explicit
locks, and have weaker concurrency and atomicity
properties than traditional ACID-compliant databases.

They differ in how much concurrency control they do
provide.
Documents can be distributed over nodes in all of the
systems, but scalability differs. All of the systems can
achieve scalability by reading (potentially) out-of-date
replicas. MongoDB and Terrastore can obtain
scalability without that compromise, and can scale
writes as well, through automatic sharding and atomic
operations on documents. CouchDB might be able to
achieve this write-scalability with the help of the new
CouchDB Lounge code.
A last-minute addendum as this paper goes to press:
the CouchDB and and Membase companies have now
merged, to form Couchbase. They plan to provide a
“best of both” merge of their products, e.g. with
CouchDB’s richer data model as well as the speed and
elastic scalability of Membase. See Couchbase.com
for more information.

4. EXTENSIBLE RECORD STORES
The extensible record stores seem to have been
motivated by Google’s success with BigTable. Their
basic data model is rows and columns, and their basic
scalability model is splitting both rows and columns
over multiple nodes:
• Rows are split across nodes through sharding on

the primary key. They typically split by range
rather than a hash function. This means that
queries on ranges of values do not have to go to
every node.

• Columns of a table are distributed over multiple
nodes by using “column groups”. These may seem
like a new complexity, but column groups are
simply a way for the customer to indicate which
columns are best stored together.

As noted earlier, these two partitionings (horizontal
and vertical) can be used simultaneously on the same
table. For example, if a customer table is partitioned
into three column groups (say, separating the customer
name/address from financial and login information),
then each of the three column groups is treated as a
separate table for the purposes of sharding the rows by
customer ID: the column groups for one customer may
or may not be on the same server.
The column groups must be pre-defined with the
extensible record stores. However, that is not a big
constraint, as new attributes can be defined at any time.
Rows are analogous to documents: they can have a
variable number of attributes (fields), the attribute
names must be unique, rows are grouped into
collections (tables), and an individual row’s attributes
can be of any type. (However, note that CouchDB and
MongoDB support nested objects, while the extensible
record stores generally support only scalar types.)

Although most extensible record stores were patterned
after BigTable, it appears that none of the extensible
records stores come anywhere near to BigTable’s
scalability at present. BigTable is used for many
purposes (think of the many services Google provides,
not just web search). It is worthwhile reading the
BigTable paper [1] for background on the challenges
with scaling.

4.1 HBase
HBase is an Apache project written in Java. It is
patterned directly after BigTable:
• HBase uses the Hadoop distributed file system in

place of the Google file system. It puts updates
into memory and periodically writes them out to
files on the disk.

• The updates go to the end of a data file, to avoid
seeks. The files are periodically compacted.
Updates also go to the end of a write ahead log, to
perform recovery if a server crashes.

• Row operations are atomic, with row-level locking
and transactions. There is optional support for
transactions with wider scope. These use
optimistic concurrency control, aborting if there is
a conflict with other updates.

• Partitioning and distribution are transparent; there
is no client-side hashing or fixed keyspace as in
some NoSQL systems. There is multiple master
support, to avoid a single point of failure.
MapReduce support allows operations to be
distributed efficiently.

• HBase’s log-structured merge file indexes allow
fast range queries and sorting.

• There is a Java API, a Thrift API, and REST API.
JDBC/ODBC support has recently been added.

The initial prototype of HBase released in February
2007. The support for transactions is attractive, and
unusual for a NoSQL system.

4.2 HyperTable
HyperTable is written in C++. Its was open-sourced
by Zvents. It doesn’t seem to have taken off in
popularity yet, but Baidu became a project sponsor,
that should help.
Hypertable is very similar to HBase and BigTable. It
uses column families that can have any number of
column “qualifiers”. It uses timestamps on data with
MVCC. It requires an underyling distributed file
system such as Hadoop, and a distributed lock
manager. Tables are replicated and partitioned over
servers by key ranges. Updates are done in memory
and later flushed to disk.

Hypertable supports a number of programming
language client interfaces. It uses a query language
named HQL.

4.3 Cassandra
Cassandra is similar to the other extensible record
stores in its data model and basic functionality. It has
column groups, updates are cached in memory and
then flushed to disk, and the disk representation is
periodically compacted. It does partitioning and
replication. Failure detection and recovery are fully
automatic. However, Cassandra has a weaker
concurrency model than some other systems: there is
no locking mechanism, and replicas are updated
asynchronously.
Like HBase, Cassandra is written in Java, and used
under Apache licensing. It is supported by DataStax,
and was originally open sourced by Facebook in 2008.
It was designed by a Facebook engineer and a Dynamo
engineer, and is described as a marriage of Dynamo
and BigTable. Cassandra is used by Facebook as well
as other companies, so the code is reasonably mature.
Client interfaces are created using Facebook’s Thrift
framework:
 http://incubator.apache.org/thrift/
Cassandra automatically brings new available nodes
into a cluster, uses the phi accrual algorithm to detect
node failure, and determines cluster membership in a
distributed fashion with a gossip-style algorithm.
Cassandra adds the concept of a “supercolumn” that
provides another level of grouping within column
groups. Databases (called keyspaces) contain column
families. A column family contains either
supercolumns or columns (not a mix of both).
Supercolunns contain columns. As with the other
systems, any row can have any combination of column
values (i.e., rows are variable length and are not
constrained by a table schema).
Cassandra uses an ordered hash index, which should
give most of the benefit of both hash and B-tree
indexes: you know which nodes could have a
particular range of values instead of searching all
nodes. However, sorting would still be slower than
with B-trees.
Cassandra has reportedly scaled to about 150 machines
in production at Facebook, perhaps more by now.
Cassandra seems to be gaining a lot of momentum as
an open source project, as well.
For applications where Cassandra’s eventual-
consistency model is not adequate, “quorum reads” of
a majority of replicas provide a way to get the latest
data. Cassandra writes are atomic within a column
family. There is also some support for versioning and
conflict resolution.

4.4 Other Systems
Yahoo’s PNUTs system also belongs in the “extensible
record store” category. However, it is not reviewed in
this paper, as it is currently only used internally to
Yahoo. We also have not reviewed BigTable,
although its functionality is available indirectly
through Google Apps. Both PNUTs and BigTable are
included in the comparison table at the end of this
paper.

4.5 Summary
The extensible record stores are mostly patterned after
BigTable. They are all similar, but differ in
concurrency mechanisms and other features.
Cassandra focuses on “weak” concurrency (via
MVCC) and HBase and HyperTable on “strong”
consistency (via locks and logging).

5. SCALABLE RELATIONAL
SYSTEMS

Unlike the other data stores, relational DBMSs have a
complete pre-defined schema, a SQL interface, and
ACID transactions. Traditionally, RDBMSs have not
achieved the scalability of the some of the previously-
described data stores. As of 5 years ago, MySQL
Cluster appeared the most scalable, although not
highly performant per node, compared to standard
MySQL.
Recent developments are changing things. Further
performance improvements have been made to
MySQL Cluster, and several new products have come
out, in particular VoltDB and Clustrix, that promise to
have good per-node performance as well as
scalability. It appears likely that some relational
DBMSs will provide scalability comparable with
NoSQL data stores, with two provisos:
• Use small-scope operations: As we’ve noted,

operations that span many nodes, e.g. joins over
many tables, will not scale well with sharding.

• Use small-scope transactions: Likewise,
transactions that span many nodes are going to be
very inefficient, with the communication and two-
phase commit overhead.

Note that NoSQL systems avoid these two problems
by making it difficult or impossible to perform larger-
scope operations and transactions. In contrast, a
scalable RDBMS does not need to preclude larger-
scope operations and transactions: they simply
penalize a customer for these operations if they use
them. Scalable RDBMSs thus have an advantage over
the NoSQL data stores, because you have the
convenience of the higher-level SQL language and
ACID properties, but you only pay a price for those

when they span nodes. Scalable RDBMSs are
therefore included as a viable alternative in this paper.

5.1 MySQL Cluster
MySQL Cluster has been part of the MySQL release
since 2004, and the code evolved from an even earlier
project from Ericsson. MySQL Cluster works by
replacing the InnoDB engine with a distributed layer
called NDB. It is available from MySQL (now
Oracle); it is open source. A proprietary MySQL
Cluster Carrier Grade upgrade provides administrative
and automated management functionality.
MySQL Cluster shards data over multiple database
servers (a “shared nothing” architecture). Every shard
is replicated, to support recovery. Bi-directional
geographic replication is also supported.
MySQL Cluster supports in-memory as well as disk-
based data. In-memory storage allows real-time
responses.
Although MySQL Cluster seems to scale to more
nodes than other RDBMSs to date, it reportedly runs
into bottlenecks after a few dozen nodes. Work
continues on MySQL Cluster, so this is likely to
improve.

5.2 VoltDB
VoltDB is a new open-source RDBMS designed for
high performance (per node) as well as scalability.
The scalability and availability features are
competitive with MySQL Cluster and the NoSQL
systems in this paper:
• Tables are partitioned over multiple servers, and

clients can call any server. The distribution is
transparent to SQL users, but the customer can
choose the sharding attribute.

• Alternatively, selected tables can be replicated
over servers, e.g. for fast access to read-mostly
data.

• In any case, shards are replicated, so that data can
be recovered in the event of a node crash.
Database snapshots are also supported, continuous
or scheduled.

Some features are still missing, e.g. online schema
changes are currently limited, and asynchronous WAN
replication and recovery are not yet implemented.
However, VoltDB has some promising features that
collectively may yield an order of magnitude
advantage in single-node performance. VoltDB
eliminates nearly all “waits” in SQL execution,
allowing a very efficient implementation:
• The system is designed for a database that fits in

(distributed) RAM on the servers, so that the
system need never wait for the disk. Indexes and
record structures are designed for RAM rather

than disk, and the overhead of a disk cache/buffer
is eliminated as well. Performance will be very
poor if virtual memory overflows RAM, but the
gain with good RAM capacity planning is
substantial.

• SQL execution is single-threaded for each shard,
using a shared-nothing architecture, so there is no
overhead for multi-thread latching.

• All SQL calls are made through stored procedures,
with each stored procedure being one transaction.
This means, if data is sharded to allow
transactions to be executed on a single node, then
no locks are required, and therefore no waits on
locks. Transaction coordination is likewise
avoided.

• Stored procedures are compiled to produce code
comparable to the access level calls of NoSQL
systems. They can be executed in the same order
on a node and on replica node(s).

VoltDB argues that these optimizations greatly reduce
the number of nodes needed to support a given
application load, with modest constraints on the
database design. They have already reported some
impressive benchmark results on their web site. Of
course, the highest performance requires that the
database working set fits in distributed RAM, perhaps
extended by SSDs. See [5] for some debate of the
architectural issues on VoltDB and similar systems.

5.3 Clustrix
Clustrix offers a product with similarities to VoltDB
and MySQL Cluster, but Clustrix nodes are sold as
rack-mounted appliances. They claim scalability to
hundreds of nodes, with automatic sharding and
replication (with a 4:1 read/write ratio, they report
350K TPS on 20 nodes and 160M rows). Failover is
automatic, and failed node recover is automatic. They
also use solid state disks for additional performance
(like the Schooner MySQL and NoSQL appliances).
As with the other relational products, Clustrix supports
SQL with fully-ACID transactions. Data distribution
and load balancing is transparent to the application
programmer. Interestingly, they also designed their
system to be seamlessly compatible with MySQL,
supporting existing MySQL applications and front-end
connectors. This could give them a big advantage in
gaining adoption of proprietary hardware.

5.4 ScaleDB
ScaleDB is a new derivative of MySQL underway.
Like MySQL Cluster, it replaces the InnoDB engine,
and uses clustering of multiple servers to achieve
scalability. ScaleDB differs in that it requires disks
shared across nodes. Every server must have access to

every disk. This architecture has not scaled very well
for Oracle RAC, however.
ScaleDB’s sharding is automatic: more servers can be
added at any time. Server failure handling is also
automatic. ScaleDB redistributes the load over
existing servers.
ScaleDB supports ACID transactions and row-level
locking. It has multi-table indexing (which is possible
due to the shared disk).

5.5 ScaleBase
ScaleBase takes a novel approach, seeking to achieve
the horizontal scaling with a layer entirely on top of
MySQL, instead of modifying MySQL. ScaleBase
includes a partial SQL parser and optimizer that shards
tables over multiple single-node MySQL databases.
Limited information is available about this new system
at the time of this writing, however. It is currently a
beta release of a commercial product, not open source.
Implementing sharding as a layer on top of MySQL
introduces a problem, as transactions do not span
MySQL databases. ScaleBase provides an option for
distributed transaction coordination, but the higher-
performance option provides ACID transactions only
within a single shard/server.

5.6 NimbusDB
NimbusDB is another new relational system. It uses
MVCC and distributed object based storage. SQL is
the access language, with a row-oriented query
optimizer and AVL tree indexes.
MVCC provides transaction isolation without the need
for locks, allowing large scale parallel processing.
Data is horizontally segmented row-by-row into
distributed objects, allowing multi-site, dynamic
distribution.

5.7 Other Systems
Google has recently created a layer on BigTable called
Megastore. Megastore adds functionality that brings
BigTable closer to a (scalable) relational DBMS in
many ways: transactions that span nodes, a database
schema defined in a SQL-like language, and
hierarchical paths that allow some limited join
capability. Google has also implemented a SQL
processor that works on BigTable. There are still a lot
of differences between Megastore / BigTable
“NoSQL” and scalable relational systems, but the gap
seems to be narrowing.
Microsoft’s Azure Tables product provides horizontal
scaling for both reads and writes, using a partition key,
row key, and timestamps. Tables are stored “in the
cloud” and can sync multiple databases. There is no
fixed schema: rows consist of a list of property-value
pairs. Due to the timing of the original version of this
paper, Azure is not covered here.

The major RDBMSs (DB2, Oracle, SQL Server) also
include some horizontal scaling features, either shared-
nothing, or shared-disk.

5.8 Summary
MySQL Cluster uses a “shared nothing” architecture
for scalability, as with most of the other solutions in
this section, and it is the most mature solution here.
VoltDB looks promising because of its horizontal
scaling as well as a bottom-up redesign to provide very
high per-node performance. Clustrix looks promising
as well, and supports solid state disks, but it is based
on proprietary software and hardware.
Limited information is available about ScaleDB,
NimbusDB, and ScaleBase at this point; they are at an
early stage.
In theory, RDBMSs should be able to deliver
scalability as long as applications avoid cross-node
operations. If this proves true in practice, the
simplicity of SQL and ACID transactions would give
them an advantage over NoSQL for most applications.

6. USE CASES
No one of these data stores is best for all uses. A
user’s prioritization of features will be different
depending on the application, as will the type of
scalability required. A complete guide to choosing a
data store is beyond the scope of this paper, but in this
section we look at some examples of applications that
fit well with the different data store categories.

6.1 Key-value Store Example
Key-value stores are generally good solutions if you
have a simple application with only one kind of object,
and you only need to look up objects up based on one
attribute. The simple functionality of key-value stores
may make them the simplest to use, especially if
you’re already familiar with memcached.
As an example, suppose you have a web application
that does many RDBMS queries to create a tailored
page when a user logs in. Suppose it takes several
seconds to execute those queries, and the user’s data is
rarely changed, or you know when it changes because
updates go through the same interface. Then you
might want to store the user’s tailored page as a single
object in a key-value store, represented in a manner
that’s efficient to send in response to browser requests,
and index these objects by user ID. If you store these
objects persistently, then you may be able to avoid
many RDBMS queries, reconstructing the objects only
when a user’s data is updated.
Even in the case of an application like Facebook,
where a user’s home page changes based on updates
made by the user as well as updates made by others, it
may be possible to execute RDBMS queries just once

when the user logs in, and for the rest of that session
show only the changes made by that user (not by other
users). Then, a simple key-value store could still be
used as a relational database cache.
You could use key-value stores to do lookups based on
multiple attributes, by creating additional key-value
indexes that you maintain yourself. However, at that
point you probably want to move to a document store.

6.2 Document Store Example
A good example application for a document store
would be one with multiple different kinds of objects
(say, in a Department of Motor Vehicles application,
with vehicles and drivers), where you need to look up
objects based on multiple fields (say, a driver’s name,
license number, owned vehicle, or birth date).
An important factor to consider is what level of
concurrency guarantees you need. If you can tolerate
an “eventually consistent” model with limited
atomicity and isolation, the document stores should
work well for you. That might be the case in the DMV
application, e.g. you don’t need to know if the driver
has new traffic violations in the past minute, and it
would be quite unlikely for two DMV offices to be
updating the same driver’s record at the same time.
But if you require that data be up-to-date and
atomically consistent, e.g. if you want to lock out
logins after three incorrect attempts, then you need to
consider other alternatives, or use a mechanism such as
quorum-read to get the latest data.

6.3 Extensible Record Store Example
The use cases for extensible record stores are similar to
those for document stores: multiple kinds of objects,
with lookups based on any field. However, the
extensible record store projects are generally aimed at
higher throughput, and may provide stronger
concurrency guarantees, at the cost of slightly more
complexity than the document stores.
Suppose you are storing customer information for an
eBay-style application, and you want to partition your
data both horizontally and vertically:
• You might want to cluster customers by country,

so that you can efficiently search all of the
customers in one country.

• You might want to separate the rarely-changed
“core” customer information such as customer
addresses and email addresses in one place, and
put certain frequently-updated customer
information (such as current bids in progress) in a
different place, to improve performance.

Although you could do this kind of horizontal/vertical
partitioning yourself on top of a document store by
creating multiple collections for multiple dimensions,

the partitioning is most easily achieved with an
extensible record store like HBase or HyperTable.

6.4 Scalable RDBMS Example
The advantages of relational DBMSs are well-known:
• If your application requires many tables with

different types of data, a relational schema
definition centralizes and simplifies your data
definition, and SQL greatly simplifies the
expression of operations that span tables.

• Many programmers are already familiar with
SQL, and many would argue that the use of SQL
is simpler than the lower-level commands
provided by NoSQL systems.

• Transactions greatly simplify coding concurrent
access. ACID semantics free the developer from
dealing with locks, out-of-date data, update
collisions, and consistency.

• Many more tools are currently available for
relational DBMSs, for report generation, forms,
and so on.

As a good example for relational, imagine a more
complex DMV application, perhaps with a query
interface for law enforcement that can interactively
search on vehicle color, make, model, year, partial
license plate numbers, and/or constraints on the owner
such as the county of residence, hair color, and sex.
ACID transactions could also prove valuable for a
database being updated from many locations, and the
aforementioned tools would be valuable as well. The
definition of a common relational schema and
administration tools can also be invaluable on a project
with many programmers.
These advantages are dependent, of course, on a
relational DBMS scaling to meet your application
needs. Recently-reported benchmarks on VoltDB,
Clustrix, and the latest version of MySQL Cluster
suggest that scalability of relational DBMSs is greatly
improving. Again, this assumes that your application
does not demand updates or joins that span many
nodes; the transaction coordination and data movement
for that would be prohibitive. However, the NoSQL
systems generally do not offer the possibility of
transactions or query joins across nodes, so you are no
worse off there.

7. CONCLUSIONS
We have covered over twenty scalable data stores in
this paper. Almost all of them are moving targets, with
limited documentation that is sometimes conflicting, so
this paper is likely out-of-date if not already inaccurate
at the time of this writing. However, we will attempt a
snapshot summary, comparison, and predictions in this
section. Consider this a starting point for further study.

7.1 Some Predictions
Here are some predictions of what will happen with the
systems we’ve discussed, over the next few years:
• Many developers will be willing to abandon

globally-ACID transactions in order to gain
scalability, availability, and other advantages. The
popularity of NoSQL systems has already
demonstrated this. Customers tolerate airline
over-booking, and orders that are rejected when
items in an online shopping cart are sold out
before the order is finalized. The world is not
globally consistent.

• NoSQL data stores will not be a “passing fad”.
The simplicity, flexibility, and scalability of these
systems fills a market niche, e.g. for web sites
with millions of read/write users and relatively
simple data schemas. Even with improved
relational scalability, NoSQL systems maintain
advantages for some applications.

• New relational DBMSs will also take a significant
share of the scalable data storage market. If
transactions and queries are generally limited to
single nodes, these systems should be able to scale
[5]. Where the desire for SQL or ACID
transactions are important, these systems will be
the preferred choice.

• Many of the scalable data stores will not prove
“enterprise ready” for a while. Even though they
fulfill a need, these systems are new and have not
yet achieved the robustness, functionality, and
maturity of database products that have been
around for a decade or more. Early adopters have
already seen web site outages with scalable data
store failures, and many large sites continue to
“roll their own” solution by sharding with existing
RDBMS products. However, some of these new
systems will mature quickly, given the great deal
of energy directed at them.

• There will be major consolidation among the
systems we’ve described. One or two systems will
likely become the leaders in each of the categories.
It seems unlikely that the market and open source
community will be able to support the sheer
number of products and projects we’ve studied
here. Venture capital and support from key
players will likely be a factor in this consolidation.
For example, among the document stores,
MongoDB has received substantial investment this
year.

7.2 SQL vs NoSQL
SQL (relational) versus NoSQL scalability is a
controversial topic. This paper argues against both
extremes. Here is some more background to support
this position.

The argument for relational over NoSQL goes
something like this:
• If new relational systems can do everything that a

NoSQL system can, with analogous performance
and scalability, and with the convenience of
transactions and SQL, why would you choose a
NoSQL system?

• Relational DBMSs have taken and retained
majority market share over other competitors in
the past 30 years: network, object, and XML
DBMSs.

• Successful relational DBMSs have been built to
handle other specific application loads in the past:
read-only or read-mostly data warehousing, OLTP
on multi-core multi-disk CPUs, in-memory
databases, distributed databases, and now
horizontally scaled databases.

• While we don’t see “one size fits all” in the SQL
products themselves, we do see a common
interface with SQL, transactions, and relational
schema that give advantages in training,
continuity, and data interchange.

The counter-argument for NoSQL goes something like
this:
• We haven’t yet seen good benchmarks showing

that RDBMSs can achieve scaling comparable
with NoSQL systems like Google’s BigTable.

• If you only require a lookup of objects based on a
single key, then a key-value store is adequate and
probably easier to understand than a relational
DBMS. Likewise for a document store on a simple
application: you only pay the learning curve for
the level of complexity you require.

• Some applications require a flexible schema,
allowing each object in a collection to have
different attributes. While some RDBMSs allow
efficient “packing” of tuples with missing
attributes, and some allow adding new attributes at
runtime, this is uncommon.

• A relational DBMS makes “expensive” (multi-
node multi-table) operations “too easy”. NoSQL
systems make them impossible or obviously
expensive for programmers.

• While RDBMSs have maintained majority market
share over the years, other products have
established smaller but non-trivial markets in areas
where there is a need for particular capabilities,
e.g. indexed objects with products like
BerkeleyDB, or graph-following operations with
object-oriented DBMSs.

Both sides of this argument have merit.

7.3 Benchmarking
Given that scalability is the focus of this paper and of
the systems we discuss, there is a “gaping hole” in our
analysis: there is a scarcity of benchmarks to
substantiate the many claims made for scalability. As
we have noted, there are benchmark results reported on
some of the systems, but almost none of the
benchmarks are run on more than one system, and the
results are generally reported by proponents of that one
system, so there is always some question about their
objectivity.
In this paper, we’ve tried to make the best comparisons
possible based on architectural arguments alone.
However, it would be highly desirable to get some
useful objective data comparing the architectures:
• The trade-offs between the architectures are

unclear. Are the bottlenecks in disk access,
network communication, index operations,
locking, or other components?

• Many people would like to see support or
refutation of the argument that new relational
systems can scale as well as NoSQL systems.

• A number of the systems are new, and may not
live up to scalability claims without years of
tuning. They also may be buggy. Which are truly
mature?

• Which systems perform best on which loads? Are
open source projects able to produce highly
performant systems?

Perhaps the best benchmark to date is from Yahoo!
Research [2], comparing PNUTS, HBASE, Cassandra,
and sharded MySQL. Their benchmark, YCSB, is
designed to be representative of web applications, and
the code is available to others. Tier 1 of the
benchmark measures raw performance, showing
latency characteristics as the server load increases.
Tier 2 measures scaling, showing how the
benchmarked system scales as additional servers are
added, and how quickly the system adapts to additional
servers.
In this paper, I’d like to make a “call for scalability
benchmarks,” suggesting YCSB as a good basis for the
comparison. Even if the YCSB benchmark is run by
different groups who may not duplicate the same
hardware Yahoo specified, the results will be
informative.

7.4 Some Comparisons
Given the quickly-changing landscape, this paper will
not attempt to argue the merits of particular systems,
beyond the comments already made. However, a
comparison of the salient features may prove useful, so
we finish with some comparisons.

Table 1 below compares the concurrency control, data
storage medium, replication, and transaction
mechanisms of the systems. These are difficult to
summarize in a short table entry without over-
simplifying, but we compare as follows.
For concurrency:
• Locks: some systems provide a mechanism to

allow only one user at a time to read or modify an
entity (an object, document, or row). In the case
of MongoDB, a locking mechanism is provided at
a field level.

• MVCC: some systems provide multi-version
concurrency control, guaranteeing a read-
consistent view of the database, but resulting in
multiple conflicting versions of an entity if
multiple users modify it at the same time.

• None: some systems do not provide atomicity,
allowing different users to modify different parts
of the same object in parallel, and giving no
guarantee as to which version of data you will get
when you read.

• ACID: the relational systems provide ACID
transactions. Some of the more recent systems do
this with no deadlocks and no waits on locks, by
pre-analyzing transactions to avoid conflicts.

For data storage, some systems are designed for
storage in RAM, perhaps with snapshots or replication
to disk, while others are designed for disk storage,
perhaps caching in RAM. RAM-based systems
typically allow use of the operating system’s virtual
memory, but performance appears to be very poor
when they overflow physical RAM. A few systems
have a pluggable back end allowing different data
storage media, or they require a standardized
underlying file system.
Replication can insure that mirror copies are always in
sync (that is, they are updated lock-step and an
operation is not completed until both replicas are
modified). Alternatively, the mirror copy may be
updated asynchronously in the background.
Asynchronous replication allows faster operation,
particular for remote replicas, but some updates may
be lost on a crash. Some systems update local copies
synchronously and geographically remote copies
asynchronously (this is probably the only practical
solution for remote data).
Transactions are supported in some systems, and not in
others. Some NoSQL systems provide something in
between, where “Local” transactions are supported
only within a single object or shard.
Table 1 compares the systems on these four
dimensions.

Table 1. System Comparison (grouped by category)

System Conc
Contol

Data
Storage

Repli-
cation

Tx

Redis Locks RAM Async N

Scalaris Locks RAM Sync L

Tokyo Locks RAM or
disk

Async L

Voldemort MVCC RAM or
BDB

Async N

Riak MVCC Plug-in Async N
Membrain Locks Flash +

Disk
Sync L

Membase Locks Disk Sync L
Dynamo MVCC Plug-in Async N

SimpleDB None S3 Async N

MongoDB Locks Disk Async N
Couch DB MVCC Disk Async N

Terrastore Locks RAM+ Sync L
HBase Locks Hadoop Async L
HyperTable Locks Files Sync L

Cassandra MVCC Disk Async L

BigTable Locks+s
tamps

GFS Sync+
Async

L

PNUTs MVCC Disk Async L
MySQL
Cluster

ACID Disk Sync Y

VoltDB ACID,
no lock

RAM Sync Y

Clustrix ACID,
no lock

Disk Sync Y

ScaleDB ACID Disk Sync Y

ScaleBase ACID Disk Async Y

NimbusDB ACID,
no lock

Disk Sync Y

Another factor to consider, but impossible to quantify
objectively in a table, is code maturity. As noted
earlier, many of the systems we discussed are only a
couple of years old, and are likely to be unreliable. For
this reason, existing database products are often a
better choice if they can scale for your application’s
needs.
Probably the most important factor to consider is
actual performance and scalability, as noted in the
discussion of benchmarking. Benchmark references
will be added to the author’s website
cattell.net/datastores as they become available.

Updates and corrections to this paper will be posted
there as well. The landscape for scalable data stores is
likely to change significantly over the next two years!

8. ACKNOWLEDGMENTS
I’d like to thank Len Shapiro, Jonathan Ellis, Dan
DeMaggio, Kyle Banker, John Busch, Darpan Dinker,
David Van Couvering, Peter Zaitsev, Steve Yen, and
Scott Jarr for their input on earlier drafts of this paper.
Any errors are my own, however! I’d also like to
thank Schooner Technologies for their support on this
paper.

9. REFERENCES
[1] F. Chang et al, “BigTable: A Distributed Storage

System for Structured Data”, Seventh Symposium
on Operating System Design and Implementation,
November 2006.

[2] B. Cooper et al, “Benchmarking Cloud Serving
Systems with YCSB”, ACM Symposium on Cloud
Computing (SoCC), Indianapolis, Indiana, June
2010.

[3] B. DeCandia et al, “Dynamo: Amazon’s Highly
Available Key-Value Store”, Proceedings 21st
ACM SIGOPS Symposium on Operating Systems
Principles, 2007.

[4] S. Gilbert and N. Lynch, “Brewer’s conjecture and
the feasibility of consistent, available, and
partition-tolerant web services”, ACM SIGACT
News 33, 2, pp 51-59, March 2002.

[5] M. Stonebraker and R. Cattell, “Ten Rules for
Scalable Performance in Simple Operation
Datastores”, Communications of the ACM, June
2011.

10. SYSTEM REFERENCES
The following table provides web information sources
for all of the DBMSs and data stores covered in the
paper, even those peripherally mentioned, alphabetized
by system name. The table also lists the licensing
model (proprietary, Apache, BSD, GPL), which may
be important depending on your application.

System License Web site for more information
Azure Prop blogs.msdn.com/b/windowsazure

storage/
Berkeley DB BSD oss.oracle.com/berkeley-db.html
BigTable Prop labs.google.com/papers/bigtable.

html
Cassandra Apache incubator.apache.org/cassandra
Clustrix Prop clustrix.com
CouchDB Apache couchdb.apache.org

Dynamo Internal portal.acm.org/citation.cfm?id=1
294281

GemFire Prop gemstone.com/products/gemfire
HBase Apache hbase.apache.org
HyperTable GPL hypertable.org
Membase Apache membase.com
Membrain Prop schoonerinfotech.com/products/
Memcached BSD memcached.org
MongoDB GPL mongodb.org
MySQL
Cluster

GPL mysql.com/cluster

NimbusDB Prop nimbusdb.com
Neo4j AGPL neo4j.org

OrientDB Apache orienttechnologies.com
PNUTs Internal research.yahoo.com/node/2304
Redis BSD code.google.com/p/redis
Riak Apache riak.basho.com
Scalaris Apache code.google.com/p/scalaris
ScaleBase Prop scalebase.com
ScaleDB GPL scaledb.com
SimpleDB Prop amazon.com/simpledb
Terrastore Apache code.google.com/terrastore
Tokyo GPL tokyocabinet.sourceforge.net
Versant Prop versant.com
Voldemort None project-voldemort.com
VoltDB GPL voltdb.com

