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ABSTRACT 
 In this paper, we examine a number of SQL and so-
called “NoSQL” data stores designed to scale simple 
OLTP-style application loads over many servers.  
Originally motivated by Web 2.0 applications, these 
systems are designed to scale to thousands or millions 
of users doing updates as well as reads, in contrast to 
traditional DBMSs and data warehouses. We contrast 
the new systems on their data model, consistency 
mechanisms, storage mechanisms, durability 
guarantees, availability, query support, and other 
dimensions.  These systems typically sacrifice some of 
these dimensions, e.g. database-wide transaction 
consistency, in order to achieve others, e.g. higher 
availability and scalability. 
Note: Bibliographic references for systems are not 
listed, but URLs for more information can be found in 
the System References table at the end of this paper.  

Caveat: Statements in this paper are based on sources 
and documentation that may not be reliable, and the 
systems described are “moving targets,” so some 
statements may be incorrect. Verify through other 
sources before depending on information here. 
Nevertheless, we hope this comprehensive survey is 
useful!  Check for future corrections on the author’s 
web site cattell.net/datastores. 
Disclosure: The author is on the technical advisory 
board of Schooner Technologies and has a consulting 
business advising on scalable databases. 

1. OVERVIEW 
In recent years a number of new systems have been 
designed to provide good horizontal scalability for 
simple read/write database operations distributed over 
many servers.  In contrast, traditional database 
products have comparatively little or no ability to scale 
horizontally on these applications.  This paper 
examines and compares the various new systems. 
Many of the new systems are referred to as “NoSQL” 
data stores.  The definition of NoSQL, which stands 
for “Not Only SQL” or “Not Relational”, is not 
entirely agreed upon.  For the purposes of this paper, 
NoSQL systems generally have six key features: 

1. the ability to horizontally scale “simple 
operation” throughput over many servers,  

2. the ability to replicate and to distribute (partition) 
data over many servers, 

3. a simple call level interface or protocol (in 
contrast to a SQL binding), 

4. a weaker concurrency model than the ACID 
transactions of most relational (SQL) database 
systems, 

5. efficient use of distributed indexes and RAM for 
data storage, and 

6. the ability to dynamically add new attributes to 
data records. 

The systems differ in other ways, and in this paper we 
contrast those differences.  They range in functionality 
from the simplest distributed hashing, as supported by 
the popular memcached open source cache, to highly 
scalable partitioned tables, as supported by Google’s 
BigTable [1].  In fact, BigTable, memcached, and 
Amazon’s Dynamo [2] provided a “proof of concept” 
that inspired many of the data stores we describe here: 
• Memcached demonstrated that in-memory indexes 

can be highly scalable, distributing and replicating 
objects over multiple nodes. 

• Dynamo pioneered the idea of eventual 
consistency as a way to achieve higher availability 
and scalability: data fetched are not guaranteed to 
be up-to-date, but updates are guaranteed to be 
propagated to all nodes eventually. 

• BigTable demonstrated that persistent record 
storage could be scaled to thousands of nodes, a 
feat that most of the other systems aspire to. 

A key feature of NoSQL systems is “shared nothing” 
horizontal scaling – replicating and partitioning data 
over many servers.  This allows them to support a large 
number of simple read/write operations per second.  
This simple operation load is traditionally called OLTP 
(online transaction processing), but it is also common 
in modern web applications 
The NoSQL systems described here generally do not 
provide ACID transactional properties: updates are 
eventually propagated, but there are limited guarantees 
on the consistency of reads.  Some authors suggest a 
“BASE” acronym in contrast to the “ACID” acronym: 
• BASE = Basically Available, Soft state, 

Eventually consistent 
• ACID = Atomicity, Consistency, Isolation, and 

Durability 
The idea is that by giving up ACID constraints, one 
can achieve much higher performance and scalability.   



However, the systems differ in how much they give up.  
For example, most of the systems call themselves 
“eventually consistent”, meaning that updates are 
eventually propagated to all nodes, but many of them 
provide mechanisms for some degree of consistency, 
such as multi-version concurrency control (MVCC). 
Proponents of NoSQL often cite Eric Brewer’s CAP 
theorem [4], which states that a system can have only 
two out of three of the following properties: 
consistency, availability, and partition-tolerance.  The 
NoSQL systems generally give up consistency.  
However, the trade-offs are complex, as we will see. 
New relational DBMSs have also been introduced to 
provide better horizontal scaling for OLTP, when 
compared to traditional RDBMSs.    After examining 
the NoSQL systems, we will look at these SQL 
systems and compare the strengths of the approaches.  
The SQL systems strive to provide horizontal 
scalability without abandoning SQL and ACID 
transactions.  We will discuss the trade-offs here. 
In this paper, we will refer to both the new SQL and 
NoSQL systems as data stores, since the term 
“database system” is widely used to refer to traditional 
DBMSs.  However, we will still use the term 
“database” to refer to the stored data in these systems.  
All of the data stores have some administrative unit 
that you would call a database: data may be stored in 
one file, or in a directory, or via some other 
mechanism that defines the scope of data used by a 
group of applications.  Each database is an island unto 
itself, even if the database is partitioned and distributed 
over multiple machines: there is no “federated 
database” concept in these systems (as with some 
relational and object-oriented databases), allowing 
multiple separately-administered databases to appear 
as one.  Most of the systems allow horizontal 
partitioning of data, storing records on different servers 
according to some key; this is called “sharding”.  Some 
of the systems also allow vertical partitioning, where 
parts of a single record are stored on different servers.  

1.1 Scope of this Paper 
Before proceeding, some clarification is needed in 
defining “horizontal scalability” and “simple 
operations”.  These define the focus of this paper. 
By “simple operations”, we refer to key lookups, reads 
and writes of one record or a small number of records. 
This is in contrast to complex queries or joins, read-
mostly access, or other application loads.  With the 
advent of the web, especially Web 2.0 sites where 
millions of users may both read and write data, 
scalability for simple database operations has become 
more important.  For example, applications may search 
and update multi-server databases of electronic mail, 
personal profiles, web postings, wikis, customer 

records, online dating records, classified ads, and many 
other kinds of data.  These all generally fit the 
definition of “simple operation” applications: reading 
or writing a small number of related records in each 
operation. 
The term “horizontal scalability” means the ability to 
distribute both the data and the load of these simple 
operations over many servers, with no RAM or disk 
shared among the servers.  Horizontal scaling differs 
from “vertical” scaling, where a database system 
utilizes many cores and/or CPUs that share RAM and 
disks.  Some of the systems we describe provide both 
vertical and horizontal scalability, and the effective use 
of multiple cores is important, but our main focus is on 
horizontal scalability, because the number of cores that 
can share memory is limited, and horizontal scaling 
generally proves less expensive, using commodity 
servers.  Note that horizontal and vertical partitioning 
are not related to horizontal and vertical scaling, 
except that they are both useful for horizontal scaling. 

1.2 Systems Beyond our Scope 
Some authors have used a broad definition of NoSQL, 
including any database system that is not relational.  
Specifically, they include: 
• Graph database systems: Neo4j and OrientDB 

provide efficient distributed storage and queries of 
a graph of nodes with references among them.  

• Object-oriented database systems: Object-oriented 
DBMSs (e.g., Versant) also provide efficient 
distributed storage of a graph of objects, and 
materialize these objects as programming 
language objects. 

• Distributed object-oriented stores: Very similar to 
object-oriented DBMSs, systems such as GemFire 
distribute object graphs in-memory on multiple 
servers. 

These systems are a good choice for applications that 
must do fast and extensive reference-following, 
especially where data fits in memory. Programming 
language integration is also valuable. Unlike the 
NoSQL systems, these systems generally provide 
ACID transactions. Many of them provide horizontal 
scaling for reference-following and distributed query 
decomposition, as well. Due to space limitations, 
however, we have omitted these systems from our 
comparisons.  The applications and the necessary 
optimizations for scaling for these systems differ from 
the systems we cover here, where key lookups and 
simple operations predominate over reference-
following and complex object behavior.  It is possible 
these systems can scale on simple operations as well, 
but that is a topic for a future paper, and proof through 
benchmarks. 



Data warehousing database systems provide horizontal 
scaling, but are also beyond the scope of this paper.  
Data warehousing applications are different in 
important ways: 
• They perform complex queries that collect and 

join information from many different tables. 
• The ratio of reads to writes is high: that is, the 

database is read-only or read-mostly. 
There are existing systems for data warehousing that 
scale well horizontally.  Because the data is 
infrequently updated, it is possible to organize or 
replicate the database in ways that make scaling 
possible. 

1.3 Data Model Terminology 
Unlike relational (SQL) DBMSs, the terminology used 
by NoSQL data stores is often inconsistent.  For the 
purposes of this paper, we need a consistent way to 
compare the data models and functionality.   
All of the systems described here provide a way to 
store scalar values, like numbers and strings, as well as 
BLOBs.  Some of them also provide a way to store 
more complex nested or reference values.  The systems 
all store sets of attribute-value pairs, but use different 
data structures, specifically: 
• A “tuple” is a row in a relational table, where 

attribute names are pre-defined in a schema, and 
the values must be scalar.   The values are 
referenced by attribute name, as opposed to an 
array or list, where they are referenced by ordinal 
position. 

• A “document” allows values to be nested 
documents or lists as well as scalar values, and the 
attribute names are dynamically defined for each 
document at runtime.  A document differs from a 
tuple in that the attributes are not defined in a 
global schema, and this wider range of values are 
permitted. 

• An “extensible record” is a hybrid between a tuple 
and a document, where families of attributes are 
defined in a schema, but new attributes can be 
added (within an attribute family) on a per-record 
basis.  Attributes may be list-valued. 

• An “object” is analogous to an object in 
programming languages, but without the 
procedural methods.  Values may be references or 
nested objects. 

1.4 Data Store Categories 
In this paper, the data stores are grouped according to 
their data model: 
• Key-value Stores: These systems store values and 

an index to find them, based on a programmer-
defined key. 

• Document Stores: These systems store documents, 
as just defined. The documents are indexed and a 
simple query mechanism is provided. 

• Extensible Record Stores: These systems store 
extensible records that can be partitioned 
vertically and horizontally across nodes.  Some 
papers call these “wide column stores”. 

• Relational Databases: These systems store (and 
index and query) tuples.  The new RDBMSs that 
provide horizontal scaling are covered in this 
paper.  

 
Data stores in these four categories are covered in the 
next four sections, respectively. We will then 
summarize and compare the systems.   

2. KEY-VALUE STORES 
The simplest data stores use a data model similar to the 
popular memcached distributed in-memory cache, with 
a single key-value index for all the data.  We’ll call 
these systems key-value stores.  Unlike memcached, 
these systems generally provide a persistence 
mechanism and additional functionality as well: 
replication, versioning, locking, transactions, sorting, 
and/or other features.  The client interface provides 
inserts, deletes, and index lookups.  Like memcached, 
none of these systems offer secondary indices or keys. 

2.1 Project Voldemort 
Project Voldemort is an advanced key-value store, 
written in Java.  It is open source, with substantial 
contributions from LinkedIn. Voldemort provides 
multi-version concurrency control (MVCC) for 
updates.  It updates replicas asynchronously, so it does 
not guarantee consistent data.  However, it can 
guarantee an up-to-date view if you read a majority of 
replicas. 
Voldemort supports optimistic locking for consistent 
multi-record updates: if updates conflict with any other 
process, they can be backed out.  Vector clocks, as 
used in Dynamo [3], provide an ordering on versions. 
You can also specify which version you want to 
update, for the put and delete operations. 
Voldemort supports automatic sharding of data. 
Consistent hashing is used to distribute data around a 
ring of nodes: data hashed to node K is replicated on 
node K+1 … K+n where n is the desired number of 
extra copies (often n=1).  Using good sharding 
technique, there should be many more “virtual” nodes 
than physical nodes (servers).  Once data partitioning 
is set up, its operation is transparent.  Nodes can be 
added or removed from a database cluster, and the 
system adapts automatically.  Voldemort automatically 
detects and recovers failed nodes. 



Voldemort can store data in RAM, but it also permits 
plugging in a storage engine.  In particular, it supports 
a Berkeley DB and Random Access File storage 
engine. Voldemort supports lists and records in 
addition to simple scalar values.  

2.2 Riak 
Riak is written in Erlang.  It was open-sourced by 
Basho in mid-2009.  Basho alternately describes Riak 
as a “key-value store” and “document store”.  We will 
categorize it as an advanced key-value store here, 
because it lacks important features of document stores, 
but it (and Voldemort) have more functionality than 
the other key-value stores: 
• Riak objects can be fetched and stored in JSON 

format, and thus can have multiple fields (like 
documents), and objects can be grouped into 
buckets, like the collections supported by 
document stores, with allowed/required fields 
defined on a per-bucket basis. 

• Riak does not support indices on any fields except 
the primary key.  The only thing you can do with 
the non-primary fields is fetch and store them as 
part of a JSON object.  Riak lacks the query 
mechanisms of the document stores; the only 
lookup you can do is on primary key.  

Riak supports replication of objects and sharding by 
hashing on the primary key.  It allows replica values to 
be temporarily inconsistent.  Consistency is tunable by 
specifying how many replicas (on different nodes) 
must respond for a successful read and how many must 
respond for a successful write.  This is per-read and 
per-write, so different parts of an application can 
choose different trade-offs. 
Like Voldemort, Riak uses a derivative of MVCC 
where vector clocks are assigned when values are 
updated.  Vector clocks can be used to determine when 
objects are direct descendents of each other or a 
common parent, so Riak can often self-repair data that 
it discovers to be out of sync.   
The Riak architecture is symmetric and simple.  Like 
Voldemort, it uses consistent hashing. There is no 
distinguished node to track status of the system: the 
nodes use a gossip protocol to track who is alive and 
who has which data, and any node may service a client 
request.  Riak also includes a map/reduce mechanism 
to split work over all the nodes in a cluster. 
The client interface to Riak is based on RESTful HTTP 
requests. REST (REpresentational State Transfer) uses 
uniform, stateless, cacheable, client-server calls.  There 
is also a programmatic interface for Erlang, Java, and 
other languages. 
The storage part of Riak is “pluggable”: the key-value 
pairs may be in memory, in ETS tables, in DETS 

tables, or in Osmos tables.  ETS, DETS, and Osmos 
tables are all implemented in Erlang, with different 
performance and properties. 
One unique feature of Riak is that it can store “links” 
between objects (documents), for example to link 
objects for authors to the objects for the books they 
wrote.  Links reduce the need for secondary indices, 
but there is still no way to do range queries. 
Here’s an example of a Riak object described in JSON: 
       { 
        "bucket":"customers", 
        "key":"12345", 
        "object":{ 
                  "name":"Mr. Smith", 
                  "phone":”415-555-6524”  } 
        "links":[ 
                 ["sales","Mr. Salesguy","salesrep"], 
                 ["cust-orders","12345","orders"] ] 
        "vclock":"opaque-riak-vclock", 
        "lastmod":"Mon, 03 Aug 2009 18:49:42 GMT" 
       } 
Note that the primary key is distinguished, while other 
fields are part of an “object” portion.  Also note that 
the bucket, vector clock, and modification date is 
specified as part of the object, and links to other 
objects are supported.   

2.3 Redis 
The Redis key-value data store started as a one-person 
project but now has multiple contributors as BSD-
licensed open source.  It is written in C.  
A Redis server is accessed by a wire protocol 
implemented in various client libraries (which must be 
updated when the protocol changes).  The client side 
does the distributed hashing over servers.  The servers 
store data in RAM, but data can be copied to disk for 
backup or system shutdown.  System shutdown may be 
needed to add more nodes. 
Like the other key-value stores, Redis implements 
insert, delete and lookup operations.  Like Voldemort, 
it allows lists and sets to be associated with a key, not 
just a blob or string.  It also includes list and set 
operations. 
Redis does atomic updates by locking, and does 
asynchronous replication.  It is reported to support 
about 100K gets/sets per second on an 8-core server. 

2.4 Scalaris 
Scalaris is functionally similar to Redis.  It was written 
in Erlang at the Zuse Institute in Berlin, and is open 
source.  In distributing data over nodes, it allows key 
ranges to be assigned to nodes, rather than simply 
hashing to nodes.  This means that a query on a range 
of values does not need to go to every node, and it also 
may allow better load balancing, depending on key 
distribution. 



Like the other key-value stores, it supports insert, 
delete, and lookup.  It does replication synchronously 
(copies must be updated before the operation is 
complete) so data is guaranteed to be consistent.  
Scalaris also supports transactions with ACID 
properties on multiple objects.  Data is stored in 
memory, but replication and recovery from node 
failures provides durability of the updates.   
Nevertheless, a multi-node power failure would cause 
disastrous loss of data, and the virtual memory limit 
sets a maximum database size. 
Scalaris reads and writes must go to a majority of the 
replicas before an operation completes.  Scalaris uses a 
ring of nodes, an unusual distribution and replication 
strategy that requires log(N) hops to read/write a key-
value pair.   

2.5 Tokyo Cabinet 
Tokyo Cabinet / Tokyo Tyrant was a sourcefourge.net 
project, but is now licensed and maintained by FAL 
Labs.  Tokyo Cabinet is the back-end server, Tokyo 
Tyrant is a client library for remote access.  Both are 
written in C. 
There are six different variations for the Tokyo 
Cabinet server: hash indexes in memory or on disk, B-
trees in memory or on disk, fixed-size record tables, 
and variable-length record tables.   The engines 
obviously differ in their performance characteristics, 
e.g. the fixed-length records allow quick lookups. 
There are slight variations on the API supported by 
these engines, but they all support common 
get/set/update operations.  The documentation is a bit 
unclear, but they claim to support locking, ACID 
transactions, a binary array data type, and more 
complex update operations to atomically update a 
number or concatenate to a string.  They support 
asynchronous replication with dual master or 
master/slave.  Recovery of a failed node is manual, and 
there is no automatic sharding. 

2.6 Memcached, Membrain, and 
Membase 
The memcached open-source distributed in-memory 
indexing system has been enhanced by Schooner 
Tehnologies and Membase, to include features 
analogous to the other key-value stores: persistence, 
replication, high availability, dynamic growth, backup, 
and so on. Without persistence or replication, 
memcached does not really qualify as a “data store”.  
However, Membrain and Membase certainly do, and 
these systems are also compatible with existing 
memcached applications. This compatibility is an 
attractive feature, given that memcached is widely 
used; memcached users that require more advanced 
features can easily upgrade to Membase and 
Membrain. 

The Membase system is open source, and is supported 
by the company Membase.  Its most attractive feature 
is probably its ability to elastically add or remove 
servers in a running system, moving data and 
dynamically redirecting requests in the meantime.  The 
elasticity in most of the other systems is not as 
convenient. 
Membrain is licensed per server, and is supported by 
Schooner Technologies. Its most attractive feature is 
probably its excellent tuning for flash memory.  The 
performance gains of flash memory will not be gained 
in other systems by treating flash as a faster hard disk; 
it is important that the system treat flash as a true 
“third tier”, different from RAM and disk.  For 
example, many systems have substantial overhead in 
buffering and caching hard disk pages; this is 
unnecessary overhead with flash.  The benchmark 
results on Schooner’s web site show many times better 
performance than a number of competitors, particularly 
when data overflows RAM. 

2.7 Summary 
All the key-value stores support insert, delete, and 
lookup operations. All of these systems provide 
scalability through key distribution over nodes. 
Voldemort, Riak, Tokyo Cabinet, and enhanced 
memcached systems can store data in RAM or on disk, 
with storage add-ons.  The others store data in RAM, 
and provide disk as backup, or rely on replication and 
recovery so that a backup is not needed. 
Scalaris and enhanced memcached systems use 
synchronous replication, the rest use asynchronous. 
Scalaris and Tokyo Cabinet implement transactions, 
while the others do not. 
Voldemort and Riak use multi-version concurrency 
control (MVCC), the others use locks. 
Membrain and Membase are built on the popular 
memcached system, adding persistence, replication, 
and other features. Backward compatibility with 
memcached give these products an advantage. 

3. DOCUMENT STORES 
As discussed in the first section, document stores 
support more complex data than the key-value stores.  
The term “document store” may be confusing: while 
these systems could store “documents” in the 
traditional sense (articles, Microsoft Word files, etc.), a 
document in these systems can be any kind of 
“pointerless object”, consistent with our definition in 
Section 1. Unlike the key-value stores, these systems 
generally support secondary indexes and multiple 
types of documents (objects) per database, and nested 
documents or lists.  Like other NoSQL systems, the 



document stores do not provide ACID transactional 
properties.   

3.1 SimpleDB 
SimpleDB is part of Amazon’s proprietary cloud 
computing offering, along with their Elastic Compute 
Cloud (EC2) and their Simple Storage Service (S3) on 
which SimpleDB is based.  SimpleDB has been around 
since 2007.  As the name suggests, its model is simple: 
SimpleDB has Select, Delete, GetAttributes, and 
PutAttributes operations on documents.  SimpleDB is 
simpler than other document stores, as it does not 
allow nested documents. 
Like most of the systems we discuss, SimpleDB 
supports eventual consistency, not transactional 
consistency.  Like most of the other systems, it does 
asynchronous replication.   
Unlike key-value datastores, and like the other 
document stores, SimpleDB supports more than one 
grouping in one database: documents are put into 
domains, which support multiple indexes. You can 
enumerate domains and their metadata. Select 
operations are on one domain, and specify a 
conjunction of constraints on attributes, basically in the 
form: 

select <attributes> from <domain> where 
    <list of attribute value constraints> 

Different domains may be stored on different Amazon 
nodes.   
Domain indexes are automatically updated when any 
document’s attributes are modified.  It is unclear from 
the documentation whether SimpleDB automatically 
selects which attributes to index, or if it indexes 
everything.  In either case, the user has no choice, and 
the use of the indexes is automatic in SimpleDB query 
processing.   
SimpleDB does not automatically partition data over 
servers.  Some horizontal scaling can be achieve by 
reading any of the replicas, if you don’t care about 
having the latest version.  Writes do not scale, 
however, because they must go asynchronously to all 
copies of a domain.  If customers want better scaling, 
they must do so manually by sharding themselves.  
SimpleDB is a “pay as you go” proprietary solution 
from Amazon.  There are currently built-in constraints, 
some of which are quite limiting: a 10 GB maximum 
domain size, a limit of 100 active domains, a 5 second 
limit on queries, and so on.  Amazon doesn’t license 
SimpleDB source or binary code to run on your own 
servers.  SimpleDB does have the advantage of 
Amazon support and documentation. 

3.2 CouchDB 
CouchDB has been an Apache project since early 
2008.  It is written in Erlang.  

A CouchDB “collection” of documents is similar to a  
SimpleDB domain, but the CouchDB data model is 
richer.  Collections comprise the only schema in 
CouchDB, and secondary indexes must be explicitly 
created on fields in collections.  A document has field 
values that can be scalar (text, numeric, or boolean) or 
compound (a document or list). 
Queries are done with what CouchDB calls “views”, 
which are defined with Javascript to specify field 
constraints.  The indexes are B-trees, so the results of 
queries can be ordered or value ranges.  Queries can be 
distributed in parallel over multiple nodes using a map-
reduce mechanism.  However, CouchDB’s view 
mechanism puts more burden on programmers than a 
declarative query language. 
Like SimpleDB, CouchDB achieves scalability 
through asynchronous replication, not through 
sharding.  Reads can go to any server, if you don’t care 
about having the latest values, and updates must be 
propagated to all the servers.  However, a new project 
called CouchDB Lounge has been built to provide 
sharding on top of CouchDB, see: 

http://code.google.com/p/couchdb-lounge/ 
Like SimpleDB, CouchDB does not guarantee 
consistency.  Unlike SimpleDB, each client does see a 
self-consistent view of the database, with repeatable 
reads: CouchDB implements multi-version 
concurrency control on individual documents, with a 
Sequence ID that is automatically created for each 
version of a document.  CouchDB will notify an 
application if someone else has updated the document 
since it was fetched.  The application can then try to 
combine the updates, or can just retry its update and 
overwrite. 
CouchDB also provides durability on system crash.  
All updates (documents and indexes) are flushed to 
disk on commit, by writing to the end of a file.  (This 
means that periodic compaction is needed.)  By 
default, it flushes to disk after every document update.  
Together with the MVCC mechanism, CouchDB’s 
durability thus provides ACID semantics at the 
document level. 
Clients call CouchDB through a RESTful interface.  
There are libraries for various languages (Java, C, 
PHP, Python, LISP, etc) that convert native API calls 
into the RESTful calls for you.  CouchDB has some 
basic database adminstration functionality as well.   

3.3 MongoDB 
MongoDB is a GPL open source document store 
written in C++ and supported by 10gen.  It has some 
similarities to CouchDB: it provides indexes on 
collections, it is lockless, and it provides a document 
query mechanism.  However, there are important 
differences: 



• MongoDB supports automatic sharding, 
distributing documents over servers. 

• Replication in MongoDB is mostly used for 
failover, not for (dirty read) scalability as in 
CouchDB.  MongoDB does not provide the global 
consistency of a traditional DBMS, but you can 
get local consistency on the up-to-date primary 
copy of a document. 

• MongoDB supports dynamic queries with 
automatic use of indices, like RDBMSs.  In 
CouchDB, data is indexed and searched by writing 
map-reduce views. 

• CouchDB provides MVCC on documents, while 
MongoDB provides atomic operations on fields.   

Atomic operations on fields are provided as follows: 
• The update command supports “modifiers” that 

facilitate atomic changes to individual values: $set 
sets a value, $inc increments a value, $push 
appends a value to an array, $pushAll appends 
several values to an array, $pull removes a value 
from an array, and $pullAll removes several 
values from an array.  Since these updates 
normally occur “in place”, they avoid the 
overhead of a return trip to the server. 

• There is an “update if current” convention for 
changing a document only if field values match a 
given previous value. 

• MongoDB supports a findAndModify command 
to perform an atomic update and immediately 
return the updated document.  This is useful for 
implementing queues and other data structures 
requiring atomicity. 

MongoDB indices are explicitly defined using an 
ensureIndex call, and any existing indices are 
automatically used for query processing.  To find all 
products released last year costing under $100 you 
could write: 

db.products.find( 
  {released: {$gte: new Date(2009, 1, 1,)},  
  price {‘$lte’: 100},}) 

If indexes are defined on the queried fields, MongoDB 
will automatically use them.  MongoDB also supports 
map-reduce, which allows for complex aggregations 
across documents. 
MongoDB stores data in a binary JSON-like format 
called BSON.  BSON supports boolean, integer, float, 
date, string and binary types.  Client drivers encode the 
local language’s document data structure (usually a 
dictionary or associative array) into BSON and send it 
over a socket connection to the MongoDB server (in 
contrast to CouchDB, which sends JSON as text over 
an HTTP REST interface).  MongoDB also supports a 
GridFS specification for large binary objects, eg. 

images and videos.  These are stored in chunks that can 
be streamed back to the client for efficient delivery. 
MongoDB supports master-slave replication with 
automatic failover and recovery.  Replication (and 
recovery) is done at the level of shards.  Collections 
are automatically sharded via a user-defined shard key.  
Replication is asynchronous for higher performance, so 
some updates may be lost on a crash. 

3.4 Terrastore 
Another recent document store is Terrastore, which is 
built on the Terracotta distributed Java VM clustering 
product.  Like many of the other NoSQL systems, 
client access to Terrastore is built on HTTP operations 
to fetch and store data.  Java and Python client APIs 
have also been implemented. 
Terrastore automatically partitions data over server 
nodes, and can automatically redistribute data when 
servers are added or removed. Like MongoDB, it can 
perform queries based on a predicate, including range 
queries, and like CouchDB, it includes a map/reduce 
mechanism for more advanced selection and 
aggregation of data. 
Like the other document databases, Terrastore is 
schema-less, and does not provide ACID transactions.  
Like MongoDB, it provides consistency on a per-
document basis: a read will always fetch the latest 
version of a document. 
Terrastore supports replication and failover to a hot 
standby. 

3.5 Summary 
The document stores are schema-less, except for 
attributes (which are simply a name, and are not pre-
specified), collections (which are simply a grouping of 
documents), and the indexes defined on collections 
(explicitly defined, except with SimpleDB).  There are 
some differences in their data models, e.g. SimpleDB 
does not allow nested documents. 
The document stores are very similar but use different 
terminology.  For example, a SimpleDB Domain = 
CouchDB Database = MongoDB Collection = 
Terrastore Bucket.  SimpleDB calls documents 
“items”, and an attribute is a field in CouchDB, or a 
key in MongoDB or Terrastore. 
Unlike the key-value stores, the document stores 
provide a mechanism to query collections based on 
multiple attribute value constraints.  However, 
CouchDB does not support a non-procedural query 
language: it puts more work on the programmer and 
requires explicit utilization of indices. 
The document stores generally do not provide explicit 
locks, and have weaker concurrency and atomicity 
properties than traditional ACID-compliant databases.  



They differ in how much concurrency control they do 
provide. 
Documents can be distributed over nodes in all of the 
systems, but scalability differs.  All of the systems can 
achieve scalability by reading (potentially) out-of-date 
replicas.  MongoDB and Terrastore can obtain 
scalability without that compromise, and can scale 
writes as well, through automatic sharding and atomic 
operations on documents.  CouchDB might be able to 
achieve this write-scalability with the help of the new 
CouchDB Lounge code. 
A last-minute addendum as this paper goes to press: 
the CouchDB and and Membase companies have now 
merged, to form Couchbase.  They plan to provide a 
“best of both” merge of their products, e.g. with 
CouchDB’s richer data model as well as the speed and 
elastic scalability of Membase.  See Couchbase.com 
for more information. 

4. EXTENSIBLE RECORD STORES 
The extensible record stores seem to have been 
motivated by Google’s success with BigTable.  Their 
basic data model is rows and columns, and their basic 
scalability model is splitting both rows and columns 
over multiple nodes: 
• Rows are split across nodes through sharding on 

the primary key.  They typically split by range 
rather than a hash function. This means that 
queries on ranges of values do not have to go to 
every node. 

• Columns of a table are distributed over multiple 
nodes by using “column groups”. These may seem 
like a new complexity, but column groups are 
simply a way for the customer to indicate which 
columns are best stored together.   

As noted earlier, these two partitionings (horizontal 
and vertical) can be used simultaneously on the same 
table.  For example, if a customer table is partitioned 
into three column groups (say, separating the customer 
name/address from financial and login information), 
then each of the three column groups is treated as a 
separate table for the purposes of sharding the rows by 
customer ID: the column groups for one customer may 
or may not be on the same server. 
The column groups must be pre-defined with the 
extensible record stores.  However, that is not a big 
constraint, as new attributes can be defined at any time.  
Rows are analogous to documents: they can have a 
variable number of attributes (fields), the attribute 
names must be unique, rows are grouped into 
collections (tables), and an individual row’s attributes 
can be of any type.  (However, note that CouchDB and 
MongoDB support nested objects, while the extensible 
record stores generally support only scalar types.)  

Although most extensible record stores were patterned 
after BigTable, it appears that none of the extensible 
records stores come anywhere near to BigTable’s 
scalability at present.  BigTable is used for many 
purposes (think of the many services Google provides, 
not just web search).  It is worthwhile reading the 
BigTable paper [1] for background on the challenges 
with scaling. 

4.1 HBase 
HBase is an Apache project written in Java.  It is 
patterned directly after BigTable: 
• HBase uses the Hadoop distributed file system in 

place of the Google file system. It puts updates 
into memory and periodically writes them out to 
files on the disk.   

• The updates go to the end of a data file, to avoid 
seeks.  The files are periodically compacted.  
Updates also go to the end of a write ahead log, to 
perform recovery if a server crashes. 

• Row operations are atomic, with row-level locking 
and transactions. There is optional support for 
transactions with wider scope.  These use 
optimistic concurrency control, aborting if there is 
a conflict with other updates. 

• Partitioning and distribution are transparent; there 
is no client-side hashing or fixed keyspace as in 
some NoSQL systems.  There is multiple master 
support, to avoid a single point of failure.  
MapReduce support allows operations to be 
distributed efficiently. 

• HBase’s log-structured merge file indexes allow 
fast range queries and sorting. 

• There is a Java API, a Thrift API, and REST API.  
JDBC/ODBC support has recently been added. 

The initial prototype of HBase released in February 
2007.  The support for transactions is attractive, and 
unusual for a NoSQL system.   

4.2 HyperTable 
HyperTable is written in C++.  Its was open-sourced 
by Zvents.  It doesn’t seem to have taken off in 
popularity yet, but Baidu became a project sponsor, 
that should help. 
Hypertable is very similar to HBase and BigTable.  It 
uses column families that can have any number of 
column “qualifiers”. It uses timestamps on data with 
MVCC.  It requires an underyling distributed file 
system such as Hadoop, and a distributed lock 
manager. Tables are replicated and partitioned over 
servers by key ranges.  Updates are done in memory 
and later flushed to disk. 



Hypertable supports a number of programming 
language client interfaces.  It uses a query language 
named HQL. 

4.3 Cassandra 
Cassandra is similar to the other extensible record 
stores in its data model and basic functionality.  It has 
column groups, updates are cached in memory and 
then flushed to disk, and the disk representation is 
periodically compacted.  It does partitioning and 
replication. Failure detection and recovery are fully 
automatic.  However, Cassandra has a weaker 
concurrency model than some other systems: there is 
no locking mechanism, and replicas are updated 
asynchronously.   
Like HBase, Cassandra is written in Java, and used 
under Apache licensing.  It is supported by DataStax, 
and was originally open sourced by Facebook in 2008.  
It was designed by a Facebook engineer and a Dynamo 
engineer, and is described as a marriage of Dynamo 
and BigTable.  Cassandra is used by Facebook as well 
as other companies, so the code is reasonably mature. 
Client interfaces are created using Facebook’s Thrift 
framework: 
 http://incubator.apache.org/thrift/ 
Cassandra automatically brings new available nodes 
into a cluster, uses the phi accrual algorithm to detect 
node failure, and determines cluster membership in a 
distributed fashion with a gossip-style algorithm.  
Cassandra adds the concept of a “supercolumn” that 
provides another level of grouping within column 
groups.  Databases (called keyspaces) contain column 
families.  A column family contains either 
supercolumns or columns (not a mix of both).  
Supercolunns contain columns.  As with the other 
systems, any row can have any combination of column 
values (i.e., rows are variable length and are not 
constrained by a table schema). 
Cassandra uses an ordered hash index, which should 
give most of the benefit of both hash and B-tree 
indexes: you know which nodes could have a 
particular range of values instead of searching all 
nodes.  However, sorting would still be slower than 
with B-trees. 
Cassandra has reportedly scaled to about 150 machines 
in production at Facebook, perhaps more by now.  
Cassandra seems to be gaining a lot of momentum as 
an open source project, as well.  
For applications where Cassandra’s eventual-
consistency model is not adequate, “quorum reads” of 
a majority of replicas provide a way to get the latest 
data.  Cassandra writes are atomic within a column 
family.  There is also some support for versioning and 
conflict resolution. 

4.4 Other Systems 
Yahoo’s PNUTs system also belongs in the “extensible 
record store” category.  However, it is not reviewed in 
this paper, as it is currently only used internally to 
Yahoo.  We also have not reviewed BigTable, 
although its functionality is available indirectly 
through Google Apps.  Both PNUTs and BigTable are 
included in the comparison table at the end of this 
paper. 

4.5 Summary 
The extensible record stores are mostly patterned after 
BigTable.  They are all similar, but differ in 
concurrency mechanisms and other features. 
Cassandra focuses on “weak” concurrency (via 
MVCC) and HBase and HyperTable on “strong” 
consistency (via locks and logging). 

5. SCALABLE RELATIONAL 
SYSTEMS 

Unlike the other data stores, relational DBMSs have a 
complete pre-defined schema, a SQL interface, and 
ACID transactions.  Traditionally, RDBMSs have not 
achieved the scalability of the some of the previously-
described data stores.  As of 5 years ago, MySQL 
Cluster appeared the most scalable, although not 
highly performant per node, compared to standard 
MySQL. 
Recent developments are changing things. Further 
performance improvements have been made to 
MySQL Cluster, and several new products have come 
out, in particular VoltDB and Clustrix, that promise to 
have good  per-node performance as well as 
scalability.  It appears likely that some relational 
DBMSs will provide scalability comparable with 
NoSQL data stores, with two provisos: 
• Use small-scope operations: As we’ve noted, 

operations that span many nodes, e.g. joins over 
many tables, will not scale well with sharding. 

• Use small-scope transactions: Likewise, 
transactions that span many nodes are going to be 
very inefficient, with the communication and two-
phase commit overhead. 

Note that NoSQL systems avoid these two problems 
by making it difficult or impossible to perform larger-
scope operations and transactions.  In contrast, a 
scalable RDBMS does not need to preclude larger-
scope operations and transactions: they simply 
penalize a customer for these operations if they use 
them.  Scalable RDBMSs thus have an advantage over 
the NoSQL data stores, because you have the 
convenience of the higher-level SQL language and 
ACID properties, but you only pay a price for those 



when they span nodes.  Scalable RDBMSs are 
therefore included as a viable alternative in this paper. 

5.1 MySQL Cluster 
MySQL Cluster has been part of the MySQL release 
since 2004, and the code evolved from an even earlier 
project from Ericsson.  MySQL Cluster works by 
replacing the InnoDB engine with a distributed layer 
called NDB.  It is available from MySQL (now 
Oracle); it is open source.  A proprietary MySQL 
Cluster Carrier Grade upgrade provides administrative 
and automated management functionality. 
MySQL Cluster shards data over multiple database 
servers (a “shared nothing” architecture).  Every shard 
is replicated, to support recovery.   Bi-directional 
geographic replication is also supported. 
MySQL Cluster supports in-memory as well as disk-
based data.  In-memory storage allows real-time 
responses. 
Although MySQL Cluster seems to scale to more 
nodes than other RDBMSs to date, it reportedly runs 
into bottlenecks after a few dozen nodes.  Work 
continues on MySQL Cluster, so this is likely to 
improve.   

5.2 VoltDB 
VoltDB is a new open-source RDBMS designed for 
high performance (per node) as well as scalability. 
The scalability and availability features are 
competitive with MySQL Cluster and the NoSQL 
systems in this paper:  
• Tables are partitioned over multiple servers, and 

clients can call any server.  The distribution is 
transparent to SQL users, but the customer can 
choose the sharding attribute. 

• Alternatively, selected tables can be replicated 
over servers, e.g. for fast access to read-mostly 
data.   

• In any case, shards are replicated, so that data can 
be recovered in the event of a node crash.  
Database snapshots are also supported, continuous 
or scheduled. 

Some features are still missing, e.g. online schema 
changes are currently limited, and asynchronous WAN 
replication and recovery are not yet implemented.  
However, VoltDB has some promising features that 
collectively may yield an order of magnitude 
advantage in single-node performance. VoltDB 
eliminates nearly all “waits” in SQL execution, 
allowing a very efficient implementation: 
• The system is designed for a database that fits in 

(distributed) RAM on the servers, so that the 
system need never wait for the disk.  Indexes and 
record structures are designed for RAM rather 

than disk, and the overhead of a disk cache/buffer 
is eliminated as well. Performance will be very 
poor if virtual memory overflows RAM, but the 
gain with good RAM capacity planning is 
substantial. 

• SQL execution is single-threaded for each shard, 
using a shared-nothing architecture, so there is no 
overhead for multi-thread latching. 

• All SQL calls are made through stored procedures, 
with each stored procedure being one transaction.  
This means, if data is sharded to allow 
transactions to be executed on a single node, then 
no locks are required, and therefore no waits on 
locks.  Transaction coordination is likewise 
avoided.   

• Stored procedures are compiled to produce code 
comparable to the access level calls of NoSQL 
systems.  They can be executed in the same order 
on a node and on replica node(s).   

VoltDB argues that these optimizations greatly reduce 
the number of nodes needed to support a given 
application load, with modest constraints on the 
database design.  They have already reported some 
impressive benchmark results on their web site.  Of 
course, the highest performance requires that the 
database working set fits in distributed RAM, perhaps 
extended by SSDs. See [5] for some debate of the 
architectural issues on VoltDB and similar systems. 

5.3 Clustrix 
Clustrix offers a product with similarities to VoltDB 
and MySQL Cluster, but Clustrix nodes are sold as 
rack-mounted appliances.  They claim scalability to 
hundreds of nodes, with automatic sharding and 
replication (with a 4:1 read/write ratio, they report 
350K TPS on 20 nodes and 160M rows).  Failover is 
automatic, and failed node recover is automatic.  They 
also use solid state disks for additional performance 
(like the Schooner MySQL and NoSQL appliances). 
As with the other relational products, Clustrix supports 
SQL with fully-ACID transactions.  Data distribution 
and load balancing is transparent to the application 
programmer. Interestingly, they also designed their 
system to be seamlessly compatible with MySQL, 
supporting existing MySQL applications and front-end 
connectors.  This could give them a big advantage in 
gaining adoption of proprietary hardware. 

5.4 ScaleDB 
ScaleDB is a new derivative of MySQL underway.  
Like MySQL Cluster, it replaces the InnoDB engine, 
and uses clustering of multiple servers to achieve 
scalability.  ScaleDB differs in that it requires disks 
shared across nodes.  Every server must have access to 



every disk.  This architecture has not scaled very well 
for Oracle RAC, however. 
ScaleDB’s sharding is automatic: more servers can be 
added at any time.  Server failure handling is also 
automatic.  ScaleDB redistributes the load over 
existing servers. 
ScaleDB supports ACID transactions and row-level 
locking.  It has multi-table indexing (which is possible 
due to the shared disk). 

5.5 ScaleBase 
ScaleBase takes a novel approach, seeking to achieve 
the horizontal scaling with a layer entirely on top of 
MySQL, instead of modifying MySQL.  ScaleBase 
includes a partial SQL parser and optimizer that shards 
tables over multiple single-node MySQL databases.  
Limited information is available about this new system 
at the time of this writing, however.  It is currently a 
beta release of a commercial product, not open source. 
Implementing sharding as a layer on top of MySQL 
introduces a problem, as transactions do not span 
MySQL databases.  ScaleBase provides an option for 
distributed  transaction coordination, but the higher-
performance option provides ACID transactions only 
within a single shard/server. 

5.6 NimbusDB 
NimbusDB is another new relational system.  It uses 
MVCC and distributed object based storage.  SQL is 
the access language, with a row-oriented query 
optimizer and AVL tree indexes. 
MVCC provides transaction isolation without the need 
for locks, allowing large scale parallel processing.  
Data is horizontally segmented row-by-row into 
distributed objects, allowing multi-site, dynamic 
distribution. 

5.7 Other Systems 
Google has recently created a layer on BigTable called 
Megastore.  Megastore adds functionality that brings 
BigTable closer to a (scalable) relational DBMS in 
many ways: transactions that span nodes, a database 
schema defined in a SQL-like language, and 
hierarchical paths that allow some limited join 
capability.  Google has also implemented a SQL 
processor that works on BigTable.  There are still a lot 
of differences between Megastore / BigTable 
“NoSQL” and scalable relational systems, but the gap 
seems to be narrowing. 
Microsoft’s Azure Tables product provides horizontal 
scaling for both reads and writes, using a partition key, 
row key, and timestamps.  Tables are stored “in the 
cloud” and can sync multiple databases.  There is no 
fixed schema: rows consist of a list of property-value 
pairs.  Due to the timing of the original version of this 
paper, Azure is not covered here. 

The major RDBMSs (DB2, Oracle, SQL Server) also 
include some horizontal scaling features, either shared-
nothing, or shared-disk. 

5.8 Summary 
MySQL Cluster uses a “shared nothing” architecture 
for scalability, as with most of the other solutions in 
this section, and it is the most mature solution here. 
VoltDB looks promising because of its horizontal 
scaling as well as a bottom-up redesign to provide very 
high per-node performance.  Clustrix looks promising 
as well, and supports solid state disks, but it is based 
on proprietary software and hardware. 
Limited information is available about ScaleDB, 
NimbusDB, and ScaleBase at this point; they are at an 
early stage. 
In theory, RDBMSs should be able to deliver 
scalability as long as applications avoid cross-node 
operations.  If this proves true in practice, the 
simplicity of SQL and ACID transactions would give 
them an advantage over NoSQL for most applications. 

6. USE CASES 
No one of these data stores is best for all uses.  A 
user’s prioritization of features will be different 
depending on the application, as will the type of 
scalability required.  A complete guide to choosing a 
data store is beyond the scope of this paper, but in this 
section we look at some examples of applications that 
fit well with the different data store categories.   

6.1 Key-value Store Example 
Key-value stores are generally good solutions if you 
have a simple application with only one kind of object, 
and you only need to look up objects up based on one 
attribute.  The simple functionality of key-value stores 
may make them the simplest to use, especially if 
you’re already familiar with memcached.   
As an example, suppose you have a web application 
that does many RDBMS queries to create a tailored 
page when a user logs in.  Suppose it takes several 
seconds to execute those queries, and the user’s data is 
rarely changed, or you know when it changes because 
updates go through the same interface.  Then you 
might want to store the user’s tailored page as a single 
object in a key-value store, represented in a manner 
that’s efficient to send in response to browser requests, 
and index these objects by user ID.  If you store these 
objects persistently, then you may be able to avoid 
many RDBMS queries, reconstructing the objects only 
when a user’s data is updated.  
Even in the case of an application like Facebook, 
where a user’s home page changes based on updates 
made by the user as well as updates made by others, it 
may be possible to execute RDBMS queries just once 



when the user logs in, and for the rest of that session 
show only the changes made by that user (not by other 
users).  Then, a simple key-value store could still be 
used as a relational database cache. 
You could use key-value stores to do lookups based on 
multiple attributes, by creating additional key-value 
indexes that you maintain yourself.  However, at that 
point you probably want to move to a document store. 

6.2 Document Store Example 
A good example application for a document store 
would be one with multiple different kinds of objects 
(say, in a Department of Motor Vehicles application, 
with vehicles and drivers), where you need to look up 
objects based on multiple fields (say, a driver’s name, 
license number, owned vehicle, or birth date). 
An important factor to consider is what level of 
concurrency guarantees you need.  If you can tolerate 
an “eventually consistent” model with limited 
atomicity and isolation, the document stores should 
work well for you.  That might be the case in the DMV 
application, e.g. you don’t need to know if the driver 
has new traffic violations in the past minute, and it 
would be quite unlikely for two DMV offices to be 
updating the same driver’s record at the same time.  
But if you require that data be up-to-date and 
atomically consistent, e.g. if you want to lock out 
logins after three incorrect attempts, then you need to 
consider other alternatives, or use a mechanism such as 
quorum-read to get the latest data.    

6.3 Extensible Record Store Example 
The use cases for extensible record stores are similar to 
those for document stores: multiple kinds of objects, 
with lookups based on any field.  However, the 
extensible record store projects are generally aimed at 
higher throughput, and may provide stronger 
concurrency guarantees, at the cost of slightly more 
complexity than the document stores. 
Suppose you are storing customer information for an 
eBay-style application, and you want to partition your 
data both horizontally and vertically: 
• You might want to cluster customers by country, 

so that you can efficiently search all of the 
customers in one country. 

• You might want to separate the rarely-changed 
“core” customer information such as customer 
addresses and email addresses in one place, and 
put certain frequently-updated customer 
information (such as current bids in progress) in a 
different place, to improve performance. 

Although you could do this kind of horizontal/vertical 
partitioning yourself on top of a document store by 
creating multiple collections for multiple dimensions, 

the partitioning is most easily achieved with an 
extensible record store like HBase or HyperTable. 

6.4 Scalable RDBMS Example 
The advantages of relational DBMSs are well-known: 
• If your application requires many tables with 

different types of data, a relational schema 
definition centralizes and simplifies your data 
definition, and SQL greatly simplifies the 
expression of operations that span tables. 

• Many programmers are already familiar with 
SQL, and many would argue that the use of SQL 
is simpler than the lower-level commands 
provided by NoSQL systems. 

• Transactions greatly simplify coding concurrent 
access.  ACID semantics free the developer from 
dealing with locks, out-of-date data, update 
collisions, and consistency. 

• Many more tools are currently available for 
relational DBMSs, for report generation, forms, 
and so on. 

As a good example for relational, imagine a more 
complex DMV application, perhaps with a query 
interface for law enforcement that can interactively 
search on vehicle color, make, model, year, partial 
license plate numbers, and/or constraints on the owner 
such as the county of residence, hair color, and sex.   
ACID transactions could also prove valuable for a 
database being updated from many locations, and the 
aforementioned tools would be valuable as well.  The 
definition of a common relational schema and 
administration tools can also be invaluable on a project 
with many programmers. 
These advantages are dependent, of course, on a 
relational DBMS scaling to meet your application 
needs.  Recently-reported benchmarks on VoltDB, 
Clustrix, and the latest version of MySQL Cluster 
suggest that scalability of relational DBMSs is greatly 
improving.  Again, this assumes that your application 
does not demand updates or joins that span many 
nodes; the transaction coordination and data movement 
for that would be prohibitive.  However, the NoSQL 
systems generally do not offer the possibility of 
transactions or query joins across nodes, so you are no 
worse off there. 

7. CONCLUSIONS 
We have covered over twenty scalable data stores in 
this paper.  Almost all of them are moving targets, with 
limited documentation that is sometimes conflicting, so 
this paper is likely out-of-date if not already inaccurate 
at the time of this writing.  However, we will attempt a 
snapshot summary, comparison, and predictions in this 
section.  Consider this a starting point for further study. 



7.1 Some Predictions 
Here are some predictions of what will happen with the 
systems we’ve discussed, over the next few years: 
• Many developers will be willing to abandon 

globally-ACID transactions in order to gain 
scalability, availability, and other advantages.  The 
popularity of NoSQL systems has already 
demonstrated this.  Customers tolerate airline 
over-booking, and orders that are rejected when 
items in an online shopping cart are sold out 
before the order is finalized.  The world is not 
globally consistent. 

• NoSQL data stores will not be a “passing fad”.  
The simplicity, flexibility, and scalability of these 
systems fills a market niche, e.g. for web sites 
with millions of read/write users and relatively 
simple data schemas.  Even with improved 
relational scalability, NoSQL systems maintain 
advantages for some applications. 

• New relational DBMSs will also take a significant 
share of the scalable data storage market.  If 
transactions and queries are generally limited to 
single nodes, these systems should be able to scale 
[5].  Where the desire for SQL or ACID 
transactions are important, these systems will be 
the preferred choice. 

• Many of the scalable data stores will not prove 
“enterprise ready” for a while. Even though they 
fulfill a need, these systems are new and have not 
yet achieved the robustness, functionality, and 
maturity of database products that have been 
around for a decade or more.  Early adopters have 
already seen web site outages with scalable data 
store failures, and many large sites continue to 
“roll their own” solution by sharding with existing 
RDBMS products.  However, some of these new 
systems will mature quickly, given the great deal 
of energy directed at them. 

• There will be major consolidation among the 
systems we’ve described. One or two systems will 
likely become the leaders in each of the categories. 
It seems unlikely that the market and open source 
community will be able to support the sheer 
number of products and projects we’ve studied 
here.  Venture capital and support from key 
players will likely be a factor in this consolidation.  
For example, among the document stores, 
MongoDB has received substantial investment this 
year. 

7.2 SQL vs NoSQL 
SQL (relational) versus NoSQL scalability is a 
controversial topic.  This paper argues against both 
extremes.  Here is some more background to support 
this position. 

The argument for relational over NoSQL goes 
something like this: 
• If new relational systems can do everything that a 

NoSQL system can, with analogous performance 
and scalability, and with the convenience of 
transactions and SQL, why would you choose a 
NoSQL system?   

• Relational DBMSs have taken and retained 
majority market share over other competitors in 
the past 30 years: network, object, and XML 
DBMSs.   

• Successful relational DBMSs have been built to 
handle other specific application loads in the past: 
read-only or read-mostly data warehousing, OLTP 
on multi-core multi-disk CPUs, in-memory 
databases, distributed databases, and now 
horizontally scaled databases.   

• While we don’t see “one size fits all” in the SQL 
products themselves, we do see a common 
interface with SQL, transactions, and relational 
schema that give advantages in training, 
continuity, and data interchange. 

The counter-argument for NoSQL goes something like 
this: 
• We haven’t yet seen good benchmarks showing 

that RDBMSs can achieve scaling comparable 
with NoSQL systems like Google’s BigTable. 

• If you only require a lookup of objects based on a 
single key, then a key-value store is adequate and 
probably easier to understand than a relational 
DBMS. Likewise for a document store on a simple 
application: you only pay the learning curve for 
the level of complexity you require. 

• Some applications require a flexible schema, 
allowing each object in a collection to have 
different attributes.  While some RDBMSs allow 
efficient “packing” of tuples with missing 
attributes, and some allow adding new attributes at 
runtime, this is uncommon. 

• A relational DBMS makes “expensive” (multi-
node multi-table) operations “too easy”.  NoSQL 
systems make them impossible or obviously 
expensive for programmers. 

• While RDBMSs have maintained majority market 
share over the years, other products have 
established smaller but non-trivial markets in areas 
where there is a need for particular capabilities, 
e.g. indexed objects with products like 
BerkeleyDB, or graph-following operations with 
object-oriented DBMSs. 

Both sides of this argument have merit. 



7.3 Benchmarking 
Given that scalability is the focus of this paper and of 
the systems we discuss, there is a “gaping hole” in our 
analysis: there is a scarcity of benchmarks to 
substantiate the many claims made for scalability.  As 
we have noted, there are benchmark results reported on 
some of the systems, but almost none of the 
benchmarks are run on more than one system, and the 
results are generally reported by proponents of that one 
system, so there is always some question about their 
objectivity. 
In this paper, we’ve tried to make the best comparisons 
possible based on architectural arguments alone.  
However, it would be highly desirable to get some 
useful objective data comparing the architectures: 
• The trade-offs between the architectures are 

unclear.  Are the bottlenecks in disk access, 
network communication, index operations, 
locking, or other components?  

• Many people would like to see support or 
refutation of the argument that new relational 
systems can scale as well as NoSQL systems. 

• A number of the systems are new, and may not 
live up to scalability claims without years of 
tuning.  They also may be buggy.  Which are truly 
mature? 

• Which systems perform best on which loads?  Are 
open source projects able to produce highly 
performant systems? 

Perhaps the best benchmark to date is from Yahoo! 
Research [2], comparing PNUTS, HBASE, Cassandra, 
and sharded MySQL.  Their benchmark, YCSB, is 
designed to be representative of web applications, and 
the code is available to others.  Tier 1 of the 
benchmark measures raw performance, showing 
latency characteristics as the server load increases.  
Tier 2 measures scaling, showing how the 
benchmarked system scales as additional servers are 
added, and how quickly the system adapts to additional 
servers. 
In this paper, I’d like to make a “call for scalability 
benchmarks,” suggesting YCSB as a good basis for the 
comparison.  Even if the YCSB benchmark is run by 
different groups who may not duplicate the same 
hardware Yahoo specified, the results will be 
informative. 

7.4 Some Comparisons 
Given the quickly-changing landscape, this paper will 
not attempt to argue the merits of particular systems, 
beyond the comments already made.  However, a 
comparison of the salient features may prove useful, so 
we finish with some comparisons. 

Table 1 below compares the concurrency control, data 
storage medium, replication, and transaction 
mechanisms of the systems.  These are difficult to 
summarize in a short table entry without over-
simplifying, but we compare as follows. 
For concurrency: 
• Locks: some systems provide a mechanism to 

allow only one user at a time to read or modify an 
entity (an object, document, or row).  In the case 
of MongoDB, a locking mechanism is provided at 
a field level. 

• MVCC: some systems provide multi-version 
concurrency control, guaranteeing a read-
consistent view of the database, but resulting in 
multiple conflicting versions of an entity if 
multiple users modify it at the same time. 

• None: some systems do not provide atomicity, 
allowing different users to modify different parts 
of the same object in parallel, and giving no 
guarantee as to which version of data you will get 
when you read.  

• ACID: the relational systems provide ACID 
transactions.  Some of the more recent systems do 
this with no deadlocks and no waits on locks, by 
pre-analyzing transactions to avoid conflicts. 

For data storage, some systems are designed for 
storage in RAM, perhaps with snapshots or replication 
to disk, while others are designed for disk storage, 
perhaps caching in RAM.  RAM-based systems 
typically allow use of the operating system’s virtual 
memory, but performance appears to be very poor 
when they overflow physical RAM. A few systems 
have a pluggable back end allowing different data 
storage media, or they require a standardized 
underlying file system. 
Replication can insure that mirror copies are always in 
sync (that is, they are updated lock-step and an 
operation is not completed until both replicas are 
modified).  Alternatively, the mirror copy may be 
updated asynchronously in the background. 
Asynchronous replication allows faster operation, 
particular for remote replicas, but some updates may 
be lost on a crash.  Some systems update local copies 
synchronously and geographically remote copies 
asynchronously (this is probably the only practical 
solution for remote data). 
Transactions are supported in some systems, and not in 
others.  Some NoSQL systems provide something in 
between, where “Local” transactions are supported 
only within a single object or shard. 
Table 1 compares the systems on these four 
dimensions. 
 



Table 1. System Comparison (grouped by category) 

System Conc 
Contol 

Data 
Storage 

Repli-
cation 

Tx 

Redis Locks RAM Async N 

Scalaris Locks RAM Sync L 

Tokyo Locks RAM or 
disk 

Async L 

Voldemort MVCC RAM or 
BDB 

Async N 

Riak MVCC Plug-in Async N 
Membrain Locks Flash + 

Disk 
Sync L 

Membase Locks Disk Sync L 
Dynamo MVCC Plug-in Async N 

SimpleDB None S3 Async N 

MongoDB Locks Disk Async N 
Couch DB MVCC Disk Async N 

Terrastore Locks RAM+ Sync L 
HBase Locks Hadoop Async L 
HyperTable Locks Files Sync L 

Cassandra MVCC Disk Async L 

BigTable Locks+s
tamps 

GFS Sync+ 
Async 

L 

PNUTs MVCC Disk Async L 
MySQL 
Cluster 

ACID Disk Sync Y 

VoltDB ACID, 
no lock 

RAM Sync Y 

Clustrix ACID, 
no lock 

Disk Sync Y 

ScaleDB ACID Disk Sync Y 

ScaleBase ACID Disk Async Y 

NimbusDB ACID, 
no lock 

Disk Sync Y 

 
Another factor to consider, but impossible to quantify 
objectively in a table, is code maturity.  As noted 
earlier, many of the systems we discussed are only a 
couple of years old, and are likely to be unreliable.  For 
this reason, existing database products are often a 
better choice if they can scale for your application’s 
needs.  
Probably the most important factor to consider is 
actual performance and scalability, as noted in the 
discussion of benchmarking.  Benchmark references 
will be added to the author’s website 
cattell.net/datastores as they become available.  

Updates and corrections to this paper will be posted 
there as well.  The landscape for scalable data stores is 
likely to change significantly over the next two years! 
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10. SYSTEM REFERENCES 
The following table provides web information sources 
for all of the DBMSs and data stores covered in the 
paper, even those peripherally mentioned, alphabetized 
by system name.  The table also lists the licensing 
model (proprietary, Apache, BSD, GPL), which may 
be important depending on your application. 
 
 

System License Web site for more information 
Azure Prop blogs.msdn.com/b/windowsazure

storage/ 
Berkeley DB BSD oss.oracle.com/berkeley-db.html 
BigTable Prop labs.google.com/papers/bigtable.

html 
Cassandra Apache incubator.apache.org/cassandra 
Clustrix Prop clustrix.com 
CouchDB Apache couchdb.apache.org 



Dynamo Internal portal.acm.org/citation.cfm?id=1
294281 

GemFire Prop gemstone.com/products/gemfire 
HBase Apache hbase.apache.org 
HyperTable GPL hypertable.org 
Membase Apache membase.com 
Membrain Prop schoonerinfotech.com/products/ 
Memcached BSD memcached.org 
MongoDB GPL mongodb.org 
MySQL 
Cluster 

GPL mysql.com/cluster 

NimbusDB Prop nimbusdb.com 
Neo4j AGPL neo4j.org 

OrientDB Apache orienttechnologies.com 
PNUTs Internal research.yahoo.com/node/2304 
Redis BSD code.google.com/p/redis 
Riak Apache riak.basho.com 
Scalaris Apache code.google.com/p/scalaris 
ScaleBase Prop scalebase.com 
ScaleDB GPL scaledb.com 
SimpleDB Prop amazon.com/simpledb 
Terrastore Apache code.google.com/terrastore 
Tokyo GPL tokyocabinet.sourceforge.net 
Versant Prop versant.com 
Voldemort None project-voldemort.com 
VoltDB GPL voltdb.com 

 


